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1 Introduction

The main objective of the proposed research has been to investigate the proper integration of
large-core graded-index multimode fibers (GIMFs) in ultrafast mode-locked fiber lasers to dramat-
ically increase the pulse energy. Detailed theoretical investigations are aimed equally at developing
a fundamental understanding of pulse propagation in GIMFs, as well as providing key opportuni-
ties to enhance the performance of ultrafast mode-locked fiber lasers.

2 Research Outline

In the following, the main results of the research are outlined in chronological and logical
order. Specifically, the rationale behind the research direction as captured in the sequence of the
publications is explained.

2.1 Preliminary analysis of nonlinear light propagation in GIMFs:

In the first publication [J1], a detailed analysis of the modal properties, dispersive behavior, and
nonlinear mode coupling in GIMFs were presented. A simplified form of a generalized nonlinear
Schrodinger equation was derived to explore the rich nonlinear dynamics related to the propaga-
tion and interaction of light pulses in graded index multimode fibers in a tractable manner. Issues
related to four-wave-mixing (FWM) in these fibers were briefly discussed, but detailed investiga-
tions on the FWM properties of GIMFs were left for future publications (see [J8]). Publication
[J1] was mainly concerned with laying out the basic formalism and was meant to pave the way for
future studies on detailed treatment of specific nonlinear phenomena such as self-phase modulation
(SPM), cross-phase modulation (XPM), and FWM in GIMFs.

2.2 Nonlinear switching based on multimodal interference:

The results obtained in [J1] and earlier publications co-authored by the PI-Mafi showed that a
multimode interferometric device based on single-mode fiber (SMF) and a multimode fiber (MMF)
junctions in the form of a SMF-GIMF-SMF coupler can be used as a nonlinear switch to mode-lock
fiber lasers. A similar device geometry had previously been used by PI-Mafi and collaborators to
obtain ultra-low-loss coupling between two SMFs with very different mode-field diameters. In the
second publication [J2], the authors presented a detailed investigation of the nonlinear multimodal
interference in the SMF-GIMF-SMF coupler. The results indicated the potential application of this
simple geometry for nonlinear devices, such as in nonlinear switching, optical signal processing,
or as saturable absorbers in mode-locked fiber lasers. Saturable absorption in this all-fiber config-
uration was shown to provide attractive properties to be used in high pulse energy mode-locked
fiber lasers.

2.3 Why is the switching power so high? The case for multicore fibers:

The nonlinear switching behavior presented in [J2] provided a very interesting possibility for
building an in-line all-fiber nonlinear switch. However, it was observed that a much higher power
was required for nonlinear-switching in multimode fibers compared to the previously reported
nonlinear switching based on the nonlinear mode-coupling in multicore fibers. Moreover, the
nonlinear-switching quality of the multimode fiber was shown to be inferior to those reported for
multicore fibers. This prompted the team to investigate the main differences in nonlinear switching
between multicore versus multimode waveguide couplers in publication [J3].
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In publication [J3], it was shown that the switching power threshold in nonlinear multimode
junctions was larger than in multicore junctions, mainly because the value of the modal propaga-
tion difference (supermodes in multicore fibers) was substantially larger in the former case. The
XPM/FWM terms also played a role in setting the power threshold but their importance was or-
ders of magnitude lower than that of the separation between effective propagation constants of the
modes. It was shown that the injection of the right combination of the modes at the input and the
collection of the right combination of the modes at the output were the main factors behind the
quality of the nonlinear switching behavior. While creating the proper injection profile is often
trivial in a weakly-coupled multicore waveguide, obtaining the right combination of the modes in
a multimode junction is difficult, if not impossible, to achieve. Therefore, multimode junctions
show lower quality nonlinear switching behavior.

2.4 How many cores are optimal for nonlinear switching in multicore fibers?

Based on the results obtained in publication [J3], the team decided that it was important to
conduct a detailed investigation of the nonlinear switching behavior of multicore fibers. Several
designs had been suggested and even fabricated by other research groups, but none had resulted in
a robust high-quality nonlinear switching behavior. At this point, the main question for the team
was whether increasing the number of the cores improved the saturable absorption characteristics
of these nonlinear multi-core arrays. The team studied the saturable absorption characteristics of
two-, three-, and five-core one-dimensional fiber coupler arrays and the seven-core hexagonal fiber
coupler array in publication [J4]. It was shown that the performance of all these saturable absorbers
were comparable and not much was gained, if anything, by going from a two-core nonlinear cou-
pler geometry to a higher number of cores.

2.5 Concentric ring core fiber for nonlinear switching:

Previously in publication [J4], the team showed that going from a two-core fiber geometry to
a higher number of cores does not improve the nonlinear switching performance of the device
considerably, if any at all [7]. Hence, a two-core fiber coupler with optimized parameters seemed
to be the optimum solution for a nonlinear switch. In publication [J6], the team proposed a novel
concentric ring core fiber geometry as a nonlinear switch to initiate the mode-locking of the fiber
lasers. This fiber has two concentric cores composed of a circular core located at the center of the
fiber and a ring core placed around the central core. The main reason for choosing this geometry
is its simple fabrication process. Given that conventional fibers are fabricated radially, maintaining
the sensitive specifications of this fiber during the drawing process is easier than non-concentric
conventional two-core fibers. Another related reason is that aligning the central core of this fiber
with the SMFs in the laser cavity is much easier and more robust compared with conventional
two-core geometries, especially in the presence of the inevitable variations in the fiber geometry
due to the fabrication and drawing process.

2.6 Multicore design guidelines

In publication [J7], the team has reported important design rules regarding multicore nonlinear
switches. The design rules will set limits on the maximum fabrication errors that are allowed for
the nonlinear switching to be observed in multicore fibers.
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2.7 Extreme Raman cascade generation from 523 to 1750 nm using a GIMF

Four-wave mixing in GIMFs is another nonlinear effect that has been of interest to the team,
especially for the generation of new wavelengths based on multimode phase matching. In this line,
it was decided to collect some experimental data on FWM in GIMFs before proceeding to explore
the theory. The experimental work was conducted by a graduate student, Hamed Pourbeyram. The
observations were totally surprising. The team reported in [J5] on the generation of a Raman cas-
cade spanning the wavelength range of 523 to 1750 nm wavelength range (perhaps even higher but
not measured), in a standard telecommunication graded-index multimode optical fiber. Despite the
highly multimode nature of the pump, the Raman peaks were generated in specific modes of the
fiber, providing substantial beam cleanup during the stimulated Raman scattering process. The ob-
served results and the theoretical investigation that have followed [J5] clearly establish the Raman
versus FWM regimes and what the conditions need to be in order to generate FWM without much
Raman contamination in GIMFs. Moreover, the team has been looking at the generated Raman for
various device applications, including an inexpensive tunable fiber-based light source. The green
pump laser used in the experiment is available in most optics laboratories and an inexpensive com-
mercial fiber coupled with a few other optical elements can potentially result in a very inexpensive
high-power tunable light source.

3 Upcoming results

3.1 Four-wave mixing in graded-index multimode fibers

In publication [J8], general guidelines are established for the generation and observation of
FWM in GIMFs. Once the theoretical work is finalized, experimental results are expected to
follow.

3.2 Experimental verification

The results reported so far, especially on nonlinear switching in multimode and multicore
fibers, have been followed with interest in the research community and experimental groups have
contacted the team to fabricate and test some of the designs. We expect to report more on the
experimental verification of the theoretical results in the future.

4 Key Personnel

The main project participants are:

• Dr. Arash Mafi, Associate Professor, Department of Physics & Astronomy, Optical Science
and Engineering, Center for High Technology Materials, University of New Mexico

• Dr. Elham Nazemosadat, Postdoctoral Scholar, Electrical Engineering Department, Univer-
sity of Wisconsin-Milwaukee.
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Pulse Propagation in a Short Nonlinear Graded-Index
Multimode Optical Fiber

Arash Mafi, Member, IEEE, Member, OSA

Abstract—We present a detailed analysis of the modal proper-
ties, dispersive behavior, and nonlinear mode coupling in graded-
index multimode fibers (GIMFs), and lay out a simplified form of
a generalized nonlinear Schrödinger equation, which can be used
to explore the rich nonlinear dynamics related to the propagation
and interaction of light pulses in GIMFs in a tractable manner.
We also briefly discuss an application of the presented formalism
in the study of four-wave mixing in these fibers.While the reported
formalism is fairly general, our presentation is mainly targeted at
device applications in which short segments of GIMFs are used.

Index Terms—Fiber nonlinear optics, four-wave mixing, optical
fibers.

I. INTRODUCTION

T HE traditional view of multimode optical fibers (MMFs)
as low-quality waveguides is gradually changing, as some

researchers over the past few years have begun to view them as
the new landscape of opportunities in novel applications. For ex-
ample, there has been a surge of interest recently in multimode-
multiplexed fiber-optic communications for ultrahigh-data-rate
transmission [1]. Recently, a pioneering work on the integration
of MMFs in mode-locked fiber lasers was reported; MMFs were
used to reduce the total nonlinear phase shift in the fiber laser
cavity in order to increase the pulse energy [2]. We also recently
reported using graded-index multimode fibers (GIMFs) to build
mode-field adapters and ultralow-loss couplers using the multi-
mode interference (MMI) effect [3], [4].
While nonlinear phenomena in MMFs have been studied

since the beginnings of the field of nonlinear optics [5]–[8],
a systematic and comprehensive analysis of the nonlinear
behavior of light propagation in multimode has been lacking.
Perhaps, this can be partially blamed on the complexity of the
nonlinear light propagation in MMFs. Even with only a few key
dispersive and nonlinear processes governing the propagation
of light in single-mode fibers (SMFs), their interplay results in
such vast and rich dynamics that has been the subject of intense
research over the past few decades where new phenomena are
still being discovered [9]; perhaps there has been little incentive
to add yet another complication to the system and cross over to
the multimode side.

Manuscript received March 12, 2012; revised May 25, 2012, June 28, 2012;
accepted July 03, 2012. Date of publication July 17, 2012; date of current ver-
sion August 08, 2012. This work was supported in part by the UWM Research
Growth Initiative Grant and in part by the Air Force Office of Scientific Re-
search under Grant FA9550-12-1-0329.
The author is with the Department of Electrical Engineering and Computer

Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA
(e-mail mafi@uwm.edu).
Digital Object Identifier 10.1109/JLT.2012.2208215

Conventional multimode fibers are often prohibitively com-
plex to analyze and their rich nonlinear dynamics are buried un-
derneath their hundreds of propagating modes and millions of
nonlinear coupling terms [10]. In this paper, we will argue that
GIMFs have specially interesting properties that make them an
ideal platform to explore the rich nonlinear dynamics related
to the propagation and interaction of multiple modes in optical
fibers in a more tractable manner. In particular, we will show
that the nonlinear dynamics in GIMFs can be considerably sim-
plified for better fundamental understanding and easier control
in novel device applications. Our arguments are in line with our
recent work in the “linear” regime on making an ultralow-loss
coupler based on MMI in GIMFs [3]. We will show that, with
sufficient care, nonzero-angular-momentum modes are never
excited; therefore, the nonlinear propagation dynamics can be
limited to only a handful of zero-angular-momentum modes.
Moreover, unlike conventional multimode fibers, all the modes
in GIMFs can propagate with nearly identical group velocities at
special wavelengths; therefore, nonlinear coupling among short
pulses is maximally achieved all along the fiber, adding to the
richness of the nonlinear dynamics.
The presence ofmultiple, though small number of nonlinearly

coupled modes gives rise to an abundance of novel and complex
nonlinear phenomena, above and beyond that of the highly inter-
esting landscape of two-polarization-mode fibers [5]. The inten-
tion of this paper is to lay out a comprehensive formalism for the
study of nonlinear light propagation in GIMFs in the scalar ap-
proximation (polarization effects are ignored). In particular, the
modal properties, dispersive behavior, and nonlinear coupling
terms are derived and explored in sufficient detail, paving the
way for future detailed studies of nonlinear phenomena such as
self-phase modulation (SPM), cross-phase modulation (XPM),
and four-wave mixing (FWM) in GIMFs. While the reported
formalism is fairly general, our presentation is mainly targeted
at device applications in which short segments of GIMFs are
used, such as those reported in [3] and [4].
Section II is primarily a review of the modal and dispersion

properties of GIMFs. While most of the material presented in
this section can be found in various earlier publications, our in-
tention has been to provide a relatively self-contained manu-
script with a more modern and accessible notation. We note that
the modal and dispersion properties reviewed in Section II are
the key ingredients which will be used to construct the equations
governing the nonlinear propagation of light in GIMFs; there-
fore, a more detailed treatment of these parameters is warranted.
In Sections III and IV, we construct a simplified generalized

nonlinear Schrödinger equation (GNLSE) for nonlinear light
propagation in GIMFs. In Sections V and VI, we apply the
GNLSE in a couple of specific examples, such as FWM in

0733-8724/$31.00 © 2012 IEEE
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GIMFs, and conclude in Section VII. Some issues related to
mode coupling and excitation of nonzero-angular-momentum
modes are briefly discussed in the Appendix.

II. BRIEF OVERVIEW OF GIMFS

In this section, we present a brief overview of GIMFs and
establish the notation that will be used in the rest of this paper
[11]. The refractive index profile of a GIMF is given by

(1)

where is the core radius, is the maximum refractive index
in the center of the core, is the relative index step, and
characterizes a near parabolic-index profile. The transverse

electric field of a propagating mode can be decomposed into
separate radial and angular components as

(2)

where [12]

(3)

(4)

is the generalized Laguerre polynomial. Here, each mode
is labeled by two integers, and , referred to as the radial
and angular numbers, respectively. The coefficients in the field
profile in (3) are chosen such that the fields are orthonormal
according to

(5)

The total number of guided modes (counting the polarization
degeneracy) is given as

(6)

where in (3) is also given by (6), and .
The near parabolic shape of the refractive index profile in (1)

is due to the near parabolic Germanium (Ge) doping concentra-
tion in the core of the GIMF

(7)

where is the maximum doping in weight percentage (wt%)
at the center of the core. At each given value of Ge doping con-
centration, the refractive index can be accurately described by
a fit to the Sellmeier equation, where the Sellmeier coefficients

depend on the Ge doping concentration. In particular, the Sell-
meier coefficients are available in [13] and [14] for pure fused
silica (refractive index represented as ), and Ge-doped
fused silica with a Ge doping concentration of 6.3-wt% (refrac-
tive index represented as ). Here, we have implicitly as-
sumed that the refractive index of the Ge-doped fused silica in-
creases linearly with the Ge doping concentration and we have
already relied on this assumption to relate (1) and (7). This is
a reasonable approximation, which is also supported by experi-
mental measurements [15]. Therefore, we derive a generalized
Sellmeier equation to incorporate the dependence of the refrac-
tive index on both the wavelength and Ge doping concentration
of fused silica as

(8)

where is again the Ge doping concentration in wt%. The utility
of (8) is that it provides, along with (1) and (7), a reliable esti-
mate of the refractive index for a broad wavelength span from
near-ultraviolet through mid-infrared region for common levels
of Ge doping concentration in GIMFs.
All the modes with equal group mode number
are almost degenerate in the value of the propagation constant,
which is given according to the formula:

(9)

where

(10)

The group velocity of the modes in mode group number is
given by

(11)

where defined in (9). After a few algebraic steps, one can
show that

(12)

where is the group index at the center of the
core, is the speed of light in vacuum, and is defined as [13],
[16]

(13)

There are three important points of caution regarding the use
of analytical equations presented previously. The first point is
that (3) is only strictly valid for ; however, the deviations
are small and (3) is often very reliable. The second point is that
(3) is only a solution of Maxwell’s equations in the core of the
fiber and must be matched to an exponentially decaying modi-
fied Bessel function of the second kind in the cladding. In calcu-
lating the overlap integrals for coupling in and out of the GIMF,
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Fig. 1. Relative delays (delay relative to mode group )
are plotted as a function of the wavelength for different mode groups.

Fig. 2. Relative delay is plotted at nm for all the modes in a GIMF.
The horizontal axis represents the mode group number and the dots represent
the values of relative delay calculated using the FEM, where the cladding effect
is now taken into account. The large black dots are for modes, the small
red dots belong to modes, and the green dashed line represents the
analytical expression from (12).

as long as the beam diameters of the in-coupling and out-cou-
pling “often”-Gaussian fields are smaller than the core diameter
of the GIMF, it is perfectly fine to use (3). For larger in-cou-
pling beam diameters, the use of (3) can still be at least quali-
tatively valid. In such cases, better accuracy can be achieved if
the cladding profile is properly accounted for, for example by
using a numerical solver. In either case, small adjustments in
the normalization coefficients of (3) are expected according to
(5) in order to compensate for substituting (3) for the modified
Bessel function of the second kind in the cladding. The third
point is that the presence of the cladding removes the degen-
eracy among modes within a mode group, both in the propaga-
tion constant and the group velocity. While this effect is gener-
ally quite small, it is more pronounced for higher order mode
groups, which have a larger overlap with the cladding. Numer-
ical examples of this last point are explored later in Figs. 2 and
3.

A. Optimum Value of

The optimum value of is often chosen to minimize the mul-
timode dispersion in an optical fiber communication link at a
specific wavelength. Olshansky and Keck [16] have derived a

Fig. 3. Same as Fig. 2 except at nm.

compact formula for the pulse dispersion in GIMFs and have
shown that the minimum pulse dispersion occurs for

(14)

While the optimum value of from (14) is a classic result
and is often quoted as the optimal design point for high-band-
width GIMFs, it may not be suitable for most modern multi-
mode optical communication systems. The key assumption in
the derivation of by [16] is the the equipartition of the
power among all the guided modes. However, this assumption
heavily favors the higher order mode groups, because higher
order mode groups have a larger mode count and carry a larger
share of the total power in this formulation. In modern multi-
mode optical communication systems where laser transmitter
sources are commonly used, lower mode groups often carry a
larger share of the total power and GIMFs designed based on
(14) result in low bandwidth.
In practice, for a typical untilted center-launch of a Gaussian-

beam laser, zero-angular-momentum modes are pre-
dominantly excited and mode groups and carry
the largest portion of the power. Therefore, a more appropriate
choice of can be be expressed as , or even

. We note that the actual value of in high-
bandwidth commercial GIMFs is proprietary and is also subject
to variations in the manufacturing process. However, because

provides a better modal delay balance among the
lower order mode groups than (14) as is required in a typical
laser launch, we speculate that it is a more accurate representa-
tion of the refractive index profile in high-bandwidth commer-
cial GIMFs and we will adopt throughout this
paper.

B. Dispersion Properties of a Conventional GIMF

Conventional high-bandwidth commercial-grade GIMFs
such as Cornings InfiniCor eSX+ are commonly optimized
for high-bandwidth performance at 850-nm wavelength. The
typical core radius m and the maximum Ge-doping is
given by . At nm, this results in

, and , where NA is
the numerical aperture. We reiterate that the exact values of
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the aforementioned parameters are often proprietary, but it is
relatively easy to speculate on the values of these parameters
from the published specifications of these fibers ( and NA),
and the preceding analysis. In order to carry out specific nu-
merical analysis in this paper, we choose the aforementioned
typical parameters, which must be reasonably close to those
of Cornings InfiniCor eSX+ or Thorlab’s GIF50, and refer to
this fiber as the conventional GIMF (C-GIMF) throughout this
paper. All the numerical results in this paper are presented for
C-GIMF.
In Fig. 1, we plot the relative delay (delay

relative to mode group ), as a function of the wavelength
for different mode groups. We observe that at around
nm where the fiber bandwidth was optimized (by choosing

where is determined at nm), the relative delay is
very small and all mode groups propagate (approximately) with
the same group velocity. However, for higher mode groups such
as is noticeably larger (0.51 fs/cm) compared with
the delay experienced by lower order mode groups (e.g.,

fs/cm). As we pointed out before, such high-order mode
groups are excited less efficiently in most modern multimode
optical communication systems and optimal values of should
not be chosen based on (14), which gives a high weight to such
high-order mode groups. In Fig. 1, it is clear that at wavelengths
substantially apart from nm, themodal group velocities
are not longer balanced, but are “almost” equally spaced. For
example, at m, fs/cm and
fs/cm.
Earlier, we cautioned that the presence of the cladding re-

moves the degeneracy of the delays among modes within each
mode group. In Fig. 2, we plot the relative delay at nm
for all the modes in a GIMF. The horizontal axis represents the
mode group number and the dots represent the values of rela-
tive delay calculated using the finite element method (FEM) of
[17], where the cladding effect is now taken into account. The
large black dots are for zero-angular-momentum modes ,
the small red dots belong to modes, and the numerical
values of the delay are compared with the analytical expression
from (12) plotted in the green dashed line. The impact of the
cladding on lifting the degeneracy amongmodes in higher mode
groups is more pronounced, as expected. In Fig. 3, we make a
similar plot, except at nm, where we observe similar
features. As expected, the delays are much less balanced among
the mode groups for nm compared with nm.
In this paper, as we will discuss later, we are primarily interested
in zero-angular-momentum modes , and Figs. 2 and 3
clearly illustrate the adequacy of analytical expression (12) for

. Figs. 2 and 3 are quite useful in estimating the nonlinear
modal interaction length between different mode groups, which
is limited by the group velocity mismatch-induced walk-off. For
example, from Fig. 3, at nm, the relative delay be-
tween and mode groups (consecutive groups with

modes) is fs/cm. Therefore, after 1 m of
propagation, the pulse walk-off is around 90 fs, resulting in very
low efficiency interaction between pulses with duration shorter
than 100 fs. However, at nm, the pulse walk-off is
quite smaller. It must be noted that these are crude but relevant
approximations and one must include such effects as nonlinear

trapping in order to obtain a more reliable estimate of the true
modal nonlinear interaction length.
Finally, GVD for mode group (i.e., ) is plotted as

a function of the wavelength. GVD does not appreciably differ
among mode groups and is taken to be the same for all modes
in this paper. The dashed lines identify the point of zero GVD.

C. Approximate Form for the Propagation Constant

It is sometimes more convenient to adopt a simplified version
of (9), when possible. For , we can write

(15)

The term can be ignored relative to the term for
short propagation lengths where it does not amount to substan-
tial “extra” phase mismatch between different mode groups. For
example, the phase mismatch between and
mode groups (consecutive groups with modes) is given
by

(16)

where is assumed for simplicity and is the length of
the GIMF. Therefore, the term contributes a addi-
tional phase if the length of the GIMF is .
For the typical design parameters of conventional commercial-
grade GIMFs at nm, cm; therefore, in order
to reliably ignore the term, the length of the GIMF must
be considerably shorter than . We note that is even
shorter if calculated with higher order mode groups. In situa-
tions where the term can be ignored and can be
trusted, (15) transforms into a particularly useful form of linear
in :

(17)

III. PULSE PROPAGATION IN A NONLINEAR MMF

In this section, we briefly review the basic formulation of the
nonlinear pulse propagation in a MMF, as presented by Poletti
and Horak [10]. Their approach is based on the pioneering work
of Kolesik and Moloney [18]. In the next section, we will adapt
this formulation to the specific case of the nonlinear pulse prop-
agation in a GIMF.
While the formulation presented in [10] includes the polar-

ization effects, we assume in this paper that the fields are ex-
cited and remain in the -linear polarization. This simplifying
assumption should be valid based on our experience from the
nonlinear pulse propagation in SMFs [5]. Essentially, all the
nonpolarization-related phenomena in fiber optics can still be
observed. While the polarization effects can also be easily in-
cluded, the resulting equation is unnecessarily complicated for
the purposes of this paper, which is focused on the multi(spa-
tial)-mode-related behavior of of the nonlinear propagation.
The modal decomposition of the (scalar) electric field into a

sum of mode function with envelopes is
given by
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c.c (18)

where the field normalization constant is chosen such
that the mode profile satisfies the normalization and orthogo-
nality condition

(19)

and represents the optical power, where is
the Fourier transform of .
Poletti and Horak [10] have shown that the GNLSE for pulse

propagation in multimode fibers can be written as

(20)

where is taken as the carrier frequency of the initial pulse.
The nonlinear field terms are given by

(21)

and the nonlinear coupling terms are given by

(22)

The nonlinear response function can be written as

(23)

where is the fractional contribution of the Raman
response to the total nonlinearity and is the delayed Raman
response function [5]. The shock time constants are given by

(24)

IV. NONLINEAR PULSE PROPAGATION IN A GIMF

The GNLSE (20) is our starting point to construct a suit-
able equation for the nonlinear pulse propagation in a GIMF. A

conventional commercial-grade GIMF supports more than 100
modes. The nonlinear mode propagation can turn into a hopeless
numerical integration of more than 100 coupled NLSEs, each
with more than one million nonlinear coupling terms. While
symmetry arguments can somewhat reduce the number of non-
linear coupling terms in cylindrically symmetric optical fibers as
shown in [10], the large number of modes and coupling terms
can easily bury the interesting physical phenomena and espe-
cially make it difficult to use the observations in a simple form
for device application; therefore, we desire to restrict our study
to a small and manageable subspace of modes in a consistent
manner. Fortunately, not only is this possible in GIMFs, it is
in fact a practical and preferred choice [3]. In this paper, we
limit our formulation and studies only to the case of or
zero-angular-momentum modes. This choice of a limited sub-
space is very reasonable and desired, because the injected pulse
is often coming either from the SMF, which is fusion-spliced to
the GIMF, or from a similar azimuthally symmetric launch. The
experimental evidence presented in our recent work in [3] con-
firms the reliability of this choice.
It is very important to note that in the nonlinear case, it can be

shown that the conservation of angular momentum, dictated by
the symmetries of in (20) and (22), prevents the excita-
tion of any modes with along the fiber from only
modes; therefore, we can safely limit our analysis to the small
and manageable zero-angular-momentum subset of modes. We
note that modes may still be excited because of the im-
perfection in the optical fiber. This coupling can be controlled
and minimized in short fiber segments. Later in the Appendix,
we will briefly discuss some of the issues related to the coupling
among modes and excitation of modes, especially in the
context of macrobending.
The modes of the GIMF can be read directly from (1),

(3), and (4), where we have

(25)

is the Laguerre polynomial, which is simply the generalized
Laguerre polynomial with zero angular momentum. After a few
simple algebraic steps, we can show that

(26)

From (26), we can readily calculate the nonlinear coupling
among modes propagating in a GIMF. In particular, for
the lowest order mode, we obtain

(27)

We note that is simply the modal radius of this
lowest order mode and is the key spatial dimension in a GIMF
that sets all its modal properties, not the core radius [3].
Specifically, and therefore, the effective area for
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the lowest order mode scales as the core radius, not
as the core area as one might have reasonably imagined. The
scaling of the modal area with the square root of the core area
has important consequences for nonlinear pulse propagation in
GIMFs. For example, unlike the single-mode fibers, where dou-
bling the core area reduces the effective nonlinearity by a factor
of 2, the effective nonlinearity of each mode is only reduced by
a factor of in GIMFs.
We can define the nonlinear coupling coefficient in GIMFs as

(28)

We note that the forms of the diagonal terms agree with
the conventional formulation often presented for the SMF and
are inversely proportional to the modal area of that particular
mode [5]. In particular, for the lowest order mode ( -like
and often the most important mode), we can use (26)–(28) to
show that

(29)

As shown in (29), we will simply use instead of in the
rest of this paper.
As a numerical example, we consider that the value of for

a typical GIMF, such as GIF50, which was studied in [3], is
approximately 3.6 times lower than that of a typical SMF-28,
given that m for GIF50 at nm. The value
of increases at shorter wavelengths and becomes larger than
1.2/W.km at m (comparable to that of SMF-28 at

nm).
Finally, in an attempt to further simplify our notation, we de-

fined with . We note that is
a fully symmetric tensor and represents the nonlinear coupling
among propagating modes in a GIMF. Here, for reference, we
calculate the nonlinear coupling terms among the three lowest
order modes in GIMFs

(30)

These simplifications allow us to rewrite the GNLSE (31) in a
more compact form

(31)

where and . A final and
perhaps major simplification is possible if the delayed Raman
response and the shock terms are ignored. In that case, the last
line (nonlinear coupling terms) in (31) can be simplified as

(32)

In what follows, we will use (31) as our starting point to analyze
the linear and nonlinear propagation of optical pulses in GIMFs.
We will also ignore the delayed Raman response and the shock
terms and, therefore, adopt the approximation presented in (32).
The impact of the delayed Raman response and the shock terms
will be addressed elsewhere in the future.

V. MMI IN GIMFS

Perhaps, the most trivial application of the GNLSE (31) is to
the MMI in GIMFs as discussed in detail in [3] and [4]. We con-
sider low-power constant wave (CW) light propagation where
both temporal and nonlinear dynamics can be ignored and ob-
tain

(33)

In [3] and [4], we assumed that the injected beam is in the form
of a Gaussian with radius , centrally aligned with the GIMF,
and expressed as

(34)

where and the bra-ket notation indicates integration
in the transverse coordinates. The injected beam can be
easily realized from the nearly Gaussian mode of an SMF to the
GIMF. The initial excitation amplitudes are given by

, where is the power of the input Gaussian field
and is given in (25). We also have

(35)

In particular, in [3], we assumed that the output port of the GIMF
is spliced to another SMF with a mode-field radius of . If
is the power carried by the out-coupling SMF, the power cou-
pling efficiency between the in-coupling and out-cou-
pling SMFs can be written as

(36)

Therefore, we get

(37)

For modes , from (17) we have

(38)

where . If we use (38) in (37), we obtain the
result presented in (12) of [3].
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Fig. 4. GVD for mode group is plotted as a function of the wavelength.
GVD does not appreciably differ among different modes and can usually be
taken to be the same for all modes.

Fig. 5. Relative power spectral density for the lowest order mode in GIMF after
0.1 m of propagation in the C-GIMF. The injected pulses are each 57 fs long,
with 200 kW peak power at nm and 1 kW peak power at
nm. In addition to the expected spectral broadening, the FWM generation of a
new peak centered at nm is notable.

VI. NEW WAVELENGTH GENERATION VIA FWM

In the previous section, we used the GNLSE (31) to explore
a MMI problem in the absence of both dispersive and non-
linear effects for low-power CW light propagation in GIMFs.
In this section, we briefly review an antipodal application of
the GNLSE (31) for short pulse propagation with high peak
power. In particular, we will observe conversion of the pump
light to other wavelengths via multimode phase-matched FWM
in GIMF.
In the first numerical experiment, we launch an unchirped

pulse of the form with fs and peak power
kW at nm in a C-GIMF segment in

the lowest order mode ; this pulse can be ob-
tained from a typical titanium–sapphire mode-locked laser. A
much weaker pulse with peak power 1 kW and the same dura-
tion at nm is also launched into the same mode of
the GIMF; this pulse can be obtained from a typical Yb-doped
mode-locked fiber laser. Fig. 5 shows the “relative” power spec-
tral density for the lowest order mode after propagating a length
of 0.1 m in the C-GIMF. We note that in our simulations, we
have assumed (typical value obtained for fused
Silica at this wavelength from (29) for C-GIMF), which results
in a nonlinear length mm. In addition to the
expected spectral broadening at nm due to dispersive

Fig. 6. Relative power spectral density for the lowest order mode in GIMF after
0.1 m of propagation in the C-GIMF. The injected pulses are each 5.6 ps long,
with 1 kW peak power at nm and 1 W peak power at
nm. The FWM generation of a new peak centered at nm is notable.

and nonlinear SPM effects, the generation of a new peak cen-
tered at nm is notable. The conversion of light from
and to is mediated by a FWM process where

(39)

where and so on, and

(40)

where is the propagation constant of the lowest order
mode at the pump wavelength ( or where
according to (9) is used as a lower index for ), is
the propagation constant of the lowest order mode at the Stokes
wavelength , and is the propagation constant of the
next-order mode at the anti-Stokes wavelength ( gives

for the index of ). We note that the FWM process
in GIMFs was experimentally observed in 1981 by Hill et al.
[19]; using the formalism presented in this paper, we can ex-
plore the efficiency of such processes by numerically solving
the GNLSE (31). We would like to point out that the required
phase matching presented in (40) involves different modes of
the GIMF, as also observed experimentally in [19]. Amore com-
prehensive treatment of the FWM process in GIMFs is beyond
the scope of this paper and will be presented elsewhere. The
analysis presented in this section is merely intended to show the
applicability of the GNLSE (31) to explore the diverse and rich
linear, dispersive, and nonlinear phenomena that can occur due
to the subtle interaction of the propagating modes in GIMFs.We
note that all the features observed in Fig. 5 (and also in Fig. 6) re-
late only to the nonlinear interactions between
and modes.
Before we close this section, we explore a similar example,

though with much longer pulses and lower values of peak
power. Here, we launch a much longer unchirped pulse with

ps and peak power kW at nm
and a much weaker pulse with peak power 1 W and the same
duration at nm, both into the lowest order mode of
the GIMF. Fig. 6 shows the “relative” power spectral density
for the lowest order mode after propagating a length of 0.1 m in
the GIMF. The nonlinear length for this pulse is approximately
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m. Considering the short propagation dis-
tance compared with the nonlinear length and the long duration
of the pulse, we do not observe any appreciable dispersive or
nonlinear pulse broadening effects. However, the impact of
the FWM processes in generating new wavelengths can be
clearly observed in Fig. 6. We note that other phase-matched
FWM processes beyond (40) are possible in GIMFs which are
responsible for the generation of other wavelengths as can be
also observed in Fig. 6, the full treatment of which will be
presented in a later publication.

VII. CONCLUSION

We have presented a detailed account of the modal properties,
dispersive behavior, and nonlinear mode coupling in GIMFs and
derived a simplified GNLSE, which can be used to explore the
rich nonlinear dynamics related to the propagation and inter-
action of multiple modes in GIMFs in a tractable manner. Al-
though we have restricted our formulation to only the zero-an-
gular-momentum modes, which are typically less than
5 modes among the more than 100 modes in a C-GIMF, the re-
sulting propagation dynamics is still considerably more com-
plex than that of the SMFs. While the exclusion of re-
stricts the applicability of our formalism to special cases and
carefully crafted experiments, we anticipate that much can be
learned from modes, without having to deal with a
system that can bury much of the interesting physics beneath
its overwhelming complexity.
We note that this paper is mainly concerned with laying out

the basic formalism, and is meant to pave the way for our future
studies on detailed treatment of specific nonlinear phenomena
such as SPM, XPM, and FWM in GIMFs. We anticipate that
careful and detailed studies of the nonlinear multimode inter-
actions in GIMFs result in interesting nonlinear dynamics and
novel device applications.

APPENDIX

In this section, we will present order-of-magnitude estimates
of mode coupling in GIMFs; in particular, we will discuss the
efficiency of mode excitations from modes.
In most systems involving MMFs and especially in practical

MMF communication systems, linear coupling among modes
plays an important role and must be properly addressed. The
coupling is mediated by various processes, including micro-
and macrobending, stress, cabling, core size variations along the
fiber, and various other manufacturing defects. Mode coupling,
because of its random nature, is traditionally treated stochasti-
cally in MMF communication systems, often using power-cou-
pling models (see, e.g., [20]–[23]). As a starting point for any
method to address the mode coupling problem, the GNLSE (20)
must be supplemented with an additional mode coupling term

on the right-hand side, where are the linear
coupling coefficients among the modes, representing both the
deterministic and stochastic processes. It must be noted that the
presence of nonlinearity often complicates the stochastic anal-
ysis, because the interaction of the nonlinear coupling terms
with the stochastic linear processes may result in colored non-
Gaussian nonstationary statistics in the power flow equations.
Unfortunately, well-developed methods do not exist to handle

such stochastic equations and one must resort to either brute-
force application of Monte Carlo simulations, or exploring the
systems in the low-power regime, where the nonlinear terms can
be linearized.
For the purposes of this paper, which is more concerned with

short segments of GIMFs, macrobending is the most important
coupling process. In particular, macrobending can potentially
result in the excitation of nonzero-angular-momentum modes

from modes. The coupling between
and modes can be easily estimated

using the formalism presented in [1] and [24], and can be written
as

(41)

where is bending radius of the GIMF. and
represent the and modes, re-
spectively. The length scale associated with the coupling term
is ; for the design parameters of C-GIMF at
nm, . In practice, the coupling between these two
modes is strongly suppressed due to the large phase mismatch,
because the two modes belong to two different mode groups.
The phase mismatch between these modes can be approxi-
mated using (17), resulting in . The power cou-
pling efficiency (the maximum fraction of the power in
mode that couples to the mode) can be characterized by

, where it can be easily shown that ,
unless mm.
From the aforementioned analysis, it is clear that for device

applications which rely on short segments of GIMFs, and when
only modes are initially excited as in [3], [4], excitation
of modes is a highly inefficient process; for example,
for a fiber segment with 1 m, . As long as the
fiber is held fairly straight, the power coupled to the
mode due to macrobending is negligible. We emphasize that
such a large phase-mismatch between and
modes is a characteristic of GIMFs and does not hold in general
for all MMFs; this is one of the key reasons in making GIMFs
so attractive for device applications [3], [4].
Core size distortions can also lead to coupling among modes

with [25]. Such distortions are the result of manufac-
turing errors and are often small; however, processes
can result in couplings within amode groupwhere themodes are
approximately phase-matched. Detailed analysis of this issue is
beyond the scope of this paper and the results depend strongly
on the manufacturing quality of the fiber. For short-length de-
vice applications such as those in [3] and [4], this effect is neg-
ligible, for the range of the fibers studied in [3] and [4]. How-
ever, in MMF communication systems where propagation dis-
tances are much longer, one must worry about both
and process, where partial phase matching in the

processes can also be assisted by various random
variations along the fiber.
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1. INTRODUCTION
Multimode interference (MMI) in optical fibers has been used
successfully in recent years for various device applications,
including beam shapers, sensors, and filters [1–8]. MMI in a
graded-index multimode optical fiber (GIMF) was recently
used to create very low-loss couplers between two single-
mode optical fibers (SMFs) with very different mode-field
diameters [9,10]. Here, the linear analysis of [9] is extended
and the MMI effect in the nonlinear regime for the GIMF cou-
pler geometry shown in Fig. 1 is investigated. The main inten-
tion of this study is to explore the possibility of using the
simple SMF-GIMF-SMF geometry in nonlinear device applica-
tions, such as in optical signal processing [11] or as a saturable
absorber (SA) in mode-locked fiber lasers [12,13].

GIMFs are commonly used in fiber-optic communications
to reduce modal dispersion, as the group velocities of all
modes are nearly identical at the design wavelength [14,15].
However, GIMFs exhibit another unique property that makes
them very attractive for MMI applications: the propagation
constants of their modes are equally spaced. Consequently,
their self-imaging lengths can be very short, even less than
1 mm [9]; therefore, it is possible to make extremely short
(even submillimeter) practical MMI devices [10] or to easily
tune the length of the GIMF coupler for a specific MMI
application [10].

In this paper, our studies are focused on the simplest case
of nonlinear MMI (NL-MMI) in the setup shown in Fig. 1, with
identical input and output SMFs. This choice is also the most
practical one for most device applications. Our results will
elucidate some general behaviors of such couplers in the non-
linear regime. More complex geometries involving different

fiber junctions and using various mode conversion techniques
[16], such as long-period gratings [17], can modify some of the
observations and conclusions. However, such complex mod-
ifications are less likely to be adopted in practical device ap-
plications in the near future. We hope that our results can be a
useful starting point for future studies of NL-MMI and mode
conversion in more complex systems.

NL-MMI has been studied in various contexts over the years
(e.g., [18]). Generally speaking, nonlinear devices that operate
based on nonlinear mode switching and coupling in spatially
separated waveguides can also be viewed as MMI devices
[19–22]. Nonlinear polarization rotation is another important
example of NL-MMI (between two orthogonal polarization
modes) that closely resembles our analysis here [23,24].

In Section 2, a general overview of GIMFs, nonlinear propa-
gation in multimode optical fibers, and MMI are presented.
NL-MMI in GIMFs in the context of the SMF-GIMF-SMF geom-
etry of Fig. 1 is discussed in Section 3. In Subsection 3.A, a
reduced version of the model that includes only two propagat-
ing modes is analyzed. This simplification helps us to develop
proper insight into the physics of NL-MMI in GIMFs. In Sub-
section 3.B, our analysis is extended to the realistic case of
five propagating modes. The impact of the presence of addi-
tional propagating modes in the NL-MMI setup can be shown
by comparing these results with the results of Subsection 3.A.
In Section 4, the saturable absorption behavior of the SMF-
GIMF-SMF geometry is analyzed as an example of the utility
of this setup for device applications. The concluding remarks
are presented in Section 5, where it is shown that the SMF-
GIMF-SMF geometry can be a viable design for nonlinear
switching or saturable absorption.
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The formalism and results in this paper are mainly laid out
in dimensionless units. This choice is common in nonlinear
fiber optics because it reduces the number of parameters
and prevents redundancy in the analysis. For real-world appli-
cations, it is easy to convert back to the dimensionful param-
eters. In Section 5, the performance of a NL-MMI SA device
with specific parameters from commercially available optical
fibers is analyzed.

In order to reduce the complexity of the analysis and to
make the problem more tractable, the studies in this paper
are considered in the continuous wave (CW) limit. In practice,
after the design parameters are chosen based on the CW
analysis, the temporal effects can be included to optimize
the final design. GIMFs, if used near their optimal design
wavelengths, are particularly attractive for short-pulse ultra-
fast applications compared with other MMFs. The low modal
dispersion in GIMFs ensures that pulses do not break up in
short GIMF segments [25], making the CW analysis an
adequate approximation.

Finally, it should be pointed out that the transmission
through the SMF-GIMF-SMF geometry is a periodic function
of the frequency of the light source [9,10]. For mode-locking
applications where short pulses are generated with very large
spectral bandwidth, the length of the GIMF needs to be suffi-
ciently short to provide the necessary spectral transmission
window. Moreover, the SMF-GIMF-SMF geometry can be po-
tentially used as the spectral filter that is required to stabilize
the mode-locking operation of normal-dispersion high-energy
femtosecond fiber lasers [26].

2. FUNDAMENTALS
In the following three subsections, a brief general overview of
GIMFs (Subsection 2.A), nonlinear multimode propagation of
light in GIMFs (Subsection 2.B), and the general formulation
of the MMI phoenomenon in GIMFs in the context of the SMF-
GIMF-SMF coupler (Subsection 2.C) will be presented. The
formulation presented in this section will be used to analyze
the nonlinear behavior of the SMF-GIMF-SMF geometry in
detail in subsequent sections.

A. Overview of GIMFs
The refractive index profile of a GIMF is given by

n2�ρ� � n2
0

�
1 − 2Δ

�
ρ

R

�
α
�
; (1)

where R is the core radius, n0 is the refractive index at the
center of the core, Δ is the index step, α ≈ 2 characterizes a
near parabolic-index profile in the core (ρ ≤ R), and α � 0
in the cladding (ρ > R). The transverse electric field profile
of a confined mode, with radial p (p ≥ 0) and angular m
integer numbers, can be expressed as [25]

Ep;m�ρ;ϕ� � Nm
p

ρjmj

ρjmj�1
0

exp
�
−

ρ2

2ρ20

�
Ljmj
p

�
ρ2

ρ20

�
eimϕ; (2)

where Ljmj
p are generalized Laguerre polynomials, and ρ0 and

Nm
p are given by

ρ0 �
R1∕2

�k0n0�1∕2�2Δ�1∕4
; Nm

p �
�������������������������

p!
π�p� jmj�!

s
; (3)

where k0 � 2π∕λ. The coefficients Nm
p of these Laguerre–

Gauss modes (LGpm) are chosen such that the modes are or-
thonormal. Using the bra-ket notation, the electric field profile
of the LGpm mode is identified as jp;mi � Ep;m�ρ;ϕ� and the
orthonormality condition is expressed as hp;mjp0;m0i �
δp;p0δm;m0 , where the bra-ket indicates integration in the trans-
verse (ρ-ϕ) coordinates.

All modes with equal group mode number g � 2p� jmj � 1
are almost degenerate in the value of the propagation con-
stant, which is given according to the formula

β�g� � n0k�1 − 2ΔXg�1∕2; (4)

where

Xg �
�

g�������
Nα

p
�
2α∕�α�2�

; (5)

Nα is the total number of guided modes (counting the polari-
zation degeneracy) and is given by

Nα �
α

α� 2
n2
0k

2
0R

2Δ: (6)

While the analysis presented in this article is generally
applicable to a wide range of GIMFs and is presented in di-
mensionless units, for specific numerical arguments and com-
parisons, the parameters of a conventional high-bandwidth
commercial-grade GIMF such as Corning’s InfiniCor eSX+ will
be used; this fiber is optimized for high bandwidth perfor-
mance at 850 nm wavelength, with the core radius of
R � 25 μm. The specified GIMF will be referred to as C-GIMF
standing for the conventional GIMF. It should be noted that
the key spatial dimension in a GIMF that sets all its modal
properties is not the core radius R, but is ρc �

���
2

p
ρ0, where

ρ0 is defined in Eq. (3). ρc is the mode radius of the LG00 mode;
for C-GIMF, ρc ≈ 7.7 μm at 1550 nm wavelength and ρc ≈
5.7 μm at 850 nm wavelength.

B. Overview of Nonlinear Propagation in GIMFs
Consider an input optical field injected into the core of the
GIMF. The injected field excites the LGpm modes of the GIMF
with different amplitudes Ap;m�0�. Ap;m�z� will be regarded as
the envelope of the electric field and z � 0 indicates the input
end of the GIMF [25]. In order to simplify our notation, the
collective index μwill be used to represent the p,m index pair
of the LGpm modes, i.e., μ≡ �p;m� in the rest of this section.
However, when necessary, we will directly use the �p;m� la-
bels or specify how to translate the μ index into the �p;m�
index pair. jAμ�z�j2 represents the optical power in the
LGpm mode.

Fig. 1. GIMF of length L is used as an intermediate coupler between
two SMF fibers. In [9,10], this geometry was used to create very
low-loss couplers between two SMFs with very different mode-field
diameters. In this paper, nonlinear MMI effects for identical input
and output SMFs are explored.
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In the scalar approximation, the generalized nonlinear
Schrödinger equation (GNLSE) describing the CW longi-
tudinal evolution of Ap;m�z� can be written as

∂Aμ

∂z
� iδβμAμ � iγ

X
ν;κ;ξ

~ημνκξAνAκA⋆
ξ ; (7)

where δβμ � βμ − β�1�, βμ is the propagation constant of the
mode with the collective index μ and β�1� is the propagation
constant of the LG00 mode with g � 1 from Eq. (4). The “nor-
malized” nonlinear coupling coefficient is a fully symmetric
tensor and is defined as ~ημνκξ � γμνκξ∕γ where

γμνκξ �
�
n2ω0

c

�Z
d2xE⋆

μ EνEκE⋆
ξ : (8)

In Eq. (8), Eμ is the shorthand notation for Ep;m�ρ;ϕ�. γ � γ0000
is the nonlinear coefficient of the LG00 mode, n2 is the non-
linear index coefficient, and ω0 is the carrier frequency.
For the lowest order mode LG00 for which ρc is simply the
modal radius, one can define γ0000 � n2ω0∕A0

eff , where
A0
eff � πρ2c . The total optical power in the GIMF is given by

~P � P
μjAμ�z�j2 and is conserved in propagation along the

GIMF, i.e., ∂z ~P � 0.
It is more convenient to express the GNLSE in dimension-

less units. Bμ can be defined as

Bμ�z� �
1����
~P

p Aμ�z�e−iγ ~Pz; (9)

and rescale the longitudinal coordinate z by the difference be-
tween the propagation constants of the first and the second
mode groups β�1� − β�2�,

ζ � z × �β�1� − β�2��: (10)

Using these transformations, Eq. (7) can be simplified as

∂ζBμ � −i�rμ � ~γ�Bμ � i~γ
X
ν;κ;ξ

~ημνκξBνBκB⋆
ξ ; (11)

where Eq. (11) is expressed in terms of the dimensionless
coefficients

rμ �
βμ − β�1�
β�2� − β�1�

; ~γ � γ ~P
β�1� − β�2�

: (12)

and can be solved for the dimensionless field Bμ in terms of
the dimensionless longitudinal coordinate ζ. It can be realized
that the rescaled fields Bμ satisfy the power conservation con-
dition

P
μjBμ�z�j2 � 1 at any points along the GIMF.

Using Eqs. (4) and (5) the fact that Xg ≪ 1, one can show
that rμ is non-negative and is nearly an integer: rμ ≈ gμ − 1,
where gμ is the group number associated with mode μ [10].

C. Overview of MMI in GIMFs
The particular setup that is considered in this paper is shown
in Fig. 1 and consists of injecting a nearly Gaussian beam from
the input SMF, which is spliced to the input facet of the GIMF,
and collecting the light at the other end of the GIMF from the
output SMF. If the normalized mode of the input SMF is

defined as jini, where hinjini � 1, the mode amplitude in the
GIMF at the input can be written as Aμ�0� �

����
~P

p
hp;mjini,

where jp;mi is the GIMF mode defined in Eq. (2).
The relative transmitted power to the output SMF is

given by

τ � 1
~P
jhoutjE�ρ;ϕ; L�ij2; (13)

where jouti is the normalized mode of the output SMF, and
jE�ρ;ϕ; L�i is the total field at the output facet of the GIMF
with a length of L, calculated from

E�ρ;ϕ; L� � eiβ�1�L
X
μ

Aμ�L�Eμ�ρ;ϕ�: (14)

Identical input and output SMFs are the focus of this paper
(jini≡ jouti), for which the relative power transmission can
be written as

τ � 1
~P2

����Xμ
A⋆
μ �0�Aμ�z�

����2 �
����Xμ

B⋆
μ �0�Bμ�z�

����2: (15)

The injected beam from the input SMF is in the form of a
Gaussian with radius w and can be expressed as

jini �
���������
2

πw2

r
exp

�
−
ρ2

w2

�
: (16)

Because of the azimuthal symmetry of the input Gaussian
beam, if the input SMF is centrally aligned with the GIMF, only
LGp0 (m � 0) modes can be excited in the GIMF. The excita-
tion amplitude can be calculated as [9]

Bp�0� �
2

���
η

p
η� 1

Ψp; η � ρ2c
w2 ; Ψ � η − 1

η� 1
: (17)

In Fig. 2, the excitation amplitudes of the LGp0 modes are
displayed as a function of the radial number p, for three differ-
ent values of the η parameter. For the case of η � 1 (not
shown in Fig. 2), only the LG00 mode is excited, because
the input Gaussian beam is mode-matched to the LG00 mode
of the GIMF. For a slightly larger value of η � 1.1, only 0.2% of
power is coupled to the LG01 mode and the power coupled to

Fig. 2. Excitation amplitudes of the LGp0 modes from Eq. (17) are
plotted as a function of the radial number p, for three different values
of the η parameter.
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higher order modes is negligible. For the larger value of η � 4,
only 64% of the power is coupled to the LG00 mode. In this
case, the relative power coupled to the LG01, LG02, and
LG03 modes are 23%, 8%, and 3%, respectively. η � 4 is ob-
tained when coupling the C-GIMF to an SMF with the
mode-field diameter of nearly 7.7 μm at 1550 nm wavelength.
For coupling of the C-GIMF to Corning SMF-28TM (SMF-28)
with the mode-field diameter of 10.4 μm at 1550 nm wave-
length, the value of η is nearly equal to 2.2.

There are two reasons for not exploring the case of η < 1 in
this manuscript. First, under the η → η−1 transformation,
Eq. (17) remains unchanged except for an overall multiplica-
tive factor of �−1�p [9]. Despite this change in the initial phase,
no new insight is obtained in overall observations and general
conclusions presented in this paper. Second, η is larger than
unity for most combinations of commercially available SMFs
and GIMFs. Therefore, our analysis is limited to η > 1 to avoid
adding unnecessary complexity.

3. NL-MMI: SMF-GIMF-SMF GEOMETRY
In the following, our studies will only include the case ofm �
0 or zero-angular momentum modes (see the discussion in
Subsection 2.C). The experimental evidence presented in
[9,10] confirms the reliability of this choice. Moreover, using
the formalism outlined in [25] it can be shown that the con-
servation of angular momentum, dictated by the symmetries
of the nonlinear coupling terms, prevents the excitation of any
modes with m ≠ 0 along the fiber from only m � 0 modes.
Therefore, our analysis can be safely limited to the small
and manageable zero angular momentum subset of modes.
It is worth mentioning that m ≠ 0 modes may still be excited
because of the bending and imperfections in the fiber. This
issue will be addressed in Section 5, but for now our analysis
is limited to the subspace of m � 0 modes.

Because only LGp0 modes are considered in the analysis,
one can readily identify the collective index μ used in Section 2
with the radial mode number p.

Therefore, all the indexes in the relevant equations such as
in Eqs. (7), (8), (11), and (14) can be directly replaced with the
radial mode numbers of the LGp0 modes.

In a typical GIMF, only a handful of m � 0 modes are sup-
ported in the core; for example, only five m � 0 modes are
supported at 1550 nm wavelength in a C-GIMF. Even for such
a small number of modes, the GNLSE will have many terms
and becomes quite complicated. In order to develop the
proper fundamental understanding and intuition on the key
mechanisms involved in the NL-MMI of these modes in a
GIMF, our analysis is initially limited to the smaller subset
of LG00 and LG10 modes in Subsection 3.A. This way, the phys-
ics of the NL-MMI in the SMF-GIMF-SMF is not buried under
the complexity introduced by the large number of modes
propagating in the GIMF. Eventually, in Subsection 3.B, the
number of propagating modes in the GIMF will be increased
to five, considering LG00 through LG40, and the similarities and
differences between the two-mode and the five-mode scenar-
ios will be explored.

As a reference for comparison with nonlinear couplings for
self-phase modulation and cross-phase modulation in conven-
tional SMFs [24], the nonlinear coupling terms among the
three lowest order modes in GIMFs (i.e., LG00, LG10, and
LG20), are: ~η0001 � ~η0011 � ~η1111 � 1∕2, ~η0012 � ~η0022 � 3∕8,

~η2222 � 11∕32, ~η1122 � 5∕16, ~η0002 � ~η0111 � ~η0112 � ~η1112 �
1∕4, ~η0122 � 3∕16, ~η1222 � 11∕64, ~η0222 � 5∕32.

A. NL-MMI with and Modes
In this subsection, it is assumed that only LG00 and LG10

modes are excited in the GIMF and the optical power is dis-
tributed only between these two modes. It should be taken
into account that this assumption is only strictly valid for η ≈
1 from Eq. (17) (p0 ≫ p1 in that case). However, our intention
in this section is not to simulate an exact experimentally real-
izable configuration in the spirit of Fig. 1. Rather, this limited
two-mode subspace is used to gain insight into the physics of
NL-MMI in GIMFs. Therefore, in this subsection, the limita-
tions of Eq. (17) are abandoned and it is assumed that
p0 � p1 � 1, where p0 � jB0j2 and p1 � jB1j2 can adopt any
(positive) values subject to this condition. In practice, it
may be possible to create this scenario experimentally in a
more complex setup than that of Fig. 1, e.g., by using mode
conversion techniques. However, such details are beyond
the scope and intentions of this subsection.

Using Eq. (11), the following coupled nonlinear equations
are obtained:

∂ζB0 � i~γ
�
jB0j2 �

1
4
jB1j2

�
B1 �

i~γ
2
�B2

0B
⋆
1 � B2

1B
⋆
0 �;

∂ζB1 � −ir1B1 �
i~γ
2
B0 �

i~γ
2

�
−jB1j2B1 � B2

0B
⋆
1 � 1

2
B2
1B

⋆
0

�
:

(18)

Nonlinear effects can be ignored when ~γ ~L ≈ 0, where ~L � L ×
�β�1� − β�2�� and L is the total length of the GIMF. In the
absence of nonlinear effects, the solution to Eq. (18) can
be written as

B0�ζ� � B0�0�; B1�ζ� � e−ir1ζB1�0�: (19)

In the linear case, the relative power of each mode is con-
served, i.e., p0 and p1 remain unchanged along the GIMF.
The relative power transmission in an SMF-GIMF-SMF setup
in the linear limit with two modes can be calculated from
Eq. (15) as

τ � 1 − 4p0p1 sin2
�
r1 ~L
2

�
: (20)

The relative power transmission is a periodic function of the
length of the GIMF and varies periodically between τmin � 1 −
4p0p1 and τmax � 1; τmin � 0 in the special case where the
power is equally distributed (p0 � p1 � 1∕2). These issues
have been discussed in further detail in [9], where the linear
MMI in GIMFs is explored in the presence of multiple
m � 0 modes.

The main parameters that determine the value of the rela-
tive power transmission in the SMF-GIMF-SMF setup are the
relative power of the modes (p0 and p1), the normalized GIMF
length ( ~L), and the normalized nonlinear coefficient ~γ. In Fig. 3,
the relative power transmission is plotted as a function of ~L
for three different cases of ~γ � 0 (solid), ~γ � 0.7 (dashed), and
~γ � 3 (dotted). All cases are plotted for relative power values
of p0 � p1 � 0.5. The linear case with ~γ � 0 clearly follows
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Eq. (20), where the oscillation periodicity of τ with respect to
~L (normalized GIMF length) is TL � 2π∕r1 ≈ π.
When the nonlinear effects are small, the nonlinearity

merely results in an additional phase mismatch between
the LG00 and LG10 modes, e.g., for ~γ � 0.7 the accumulated
nonlinear phase mismatch is nearly π at ~L � 4.5π and is
responsible for changing the τ � 0 in the linear case to τ ≈
1 for ~γ � 0.7 in Fig. 3. It should be emphasized that in the pres-
ence of nonlinearity, p0 and p1 are not conserved and vary
periodically along the GIMF (LG00 and LG10 exchange power).
However, unless we explicitly specify their ζ-dependence,
when referring to p0 and p1, we mean their initial value at
the ζ � 0 point in the GIMF and refrain from introducing
new variables.

The linear and nonlinear cases of ~γ � 0 and ~γ � 0.7 differ in
another important feature besides the cumulative nonlinear
phase mismatch; the minimum value of τ for ~γ � 0.7 is larger
than zero. This effect becomes more prominent for larger rel-
ative nonlinear coefficients. In fact, as can be seen for ~γ � 3 in
Fig. 3, the relative power transmission remains above 60% for
all values of ~L.

The relative power transmission explored in Fig. 3 is for the
case of p0 � p1 � 0.5. In Fig. 4, similar situations as in Fig. 3
are considered, yet with p0 � 0.75 and p1 � 0.25 at ζ � 0. The
solid line relates to ~γ � 0 and follows Eq. (20). Similar to Fig. 3,
the nonlinear phase mismatch between the LG00 and LG10

modes increases the frequency of oscillation of τ with respect
of ~L as the relative nonlinear coefficient is increased. In the
case of ~γ � 3 (dotted), the relative power transmission τ

remains nearly equal to unity for all values of ~L. For large val-
ues of ~γ (e.g., ~γ � 3), the power coupling between LG00 and
LG10 modes is inefficient and the amplitude of the oscillation
in the relative power carried by each mode as a function of ~L is
small and is a decreasing function of ~γ. In other words, for a
sufficiently large values of ~γ, p0 and p1 remain unchanged as
they propagate through the GIMF. The cumulative phase of
the LG00 and LG10 modes is also nearly identical for large ~γ
as the two modes propagate along the GIMF. The combined
effects of the nearly unchanged relative power and the nearly
identical cumulative phase of the modes results in the near
unity value of τ in this situation.

In Fig. 5, similar situations as in Fig. 4 are considered, yet
with p0 � 0.25 and p1 � 0.75 at ζ � 0. The solid line relates to
~γ � 0 and is identical to the case of p0 � 0.75 and p1 � 0.25
presented in Fig. 4, in agreement with Eq. (20). Similar to
Fig. 4, increasing the relative nonlinear coefficient results
in a larger oscillation frequency of τ with respect to ~L. How-
ever, in complete contrast to the behavior observed in Fig. 4
for ~γ ≠ 0, increasing ~γ initially lowers the minimum value of τ
and for sufficiently large values of ~γ, the minimum can even be
equal to zero. If ~γ is further increased, the minimum value of τ
increases again and eventually settles asymptotically at a
value that can be substantially different from zero. This behav-
ior is dictated by a very efficient exchange of power between
LG00 and LG10 modes as well as considerable difference be-
tween the cumulative phases of the modes; however, at a large
~γ the cumulative phases of the modes become nearly identical.

As discussed above, the dynamics of power coupling be-
tween the LG00 and LG10 modes is quite complex. In Fig. 6,
p0�ζ � ~L� is plotted as a function of p0�ζ � 0� for ~L � 4.5π.

Fig. 3. Relative power transmission is plotted as a function of the
normalized GIMF length ~L for the case of LG00 and LG10 modes when
p0 � p1 � 0.5 at ζ � 0, for ~γ � 0 (solid), ~γ � 0.7 (dashed), and ~γ � 3
(dotted).

Fig. 4. Same as Fig. 3, except for p0 � 0.75 and p1 � 0.25 at ζ � 0.

Fig. 5. Same as Fig. 3, except for p0 � 0.25 and p1 � 0.75 at ζ � 0.

Fig. 6. This figure shows the exchange of power between the LG00
and LG10 modes, where p0 at the output of the GIMF is plotted as a
function of p0 at the input for ~L � 4.5π.
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In the linear case, LG00 and LG10 modes are totally uncoupled
and p0�ζ � ~L� � p0�ζ � 0�, as shown with the diagonal
dashed line in Fig. 6. However, for ~γ � 2, nonlinearity couples
the power between LG00 and LG10 modes and p0�ζ � ~L� oscil-
lates as a function of p0�ζ � 0�, shown with the dotted line in
Fig. 6. It can be seen that p0�ζ � ~L� oscillates more rapidly as ~γ
increases. In order to isolate the nonlinear effect, the disper-
sive term r1 is set to zero and the power coupling curve for
~γ � 2 is re-plotted as the solid line in Fig. 6. Comparing the
solid and dotted lines, it can be concluded that the effect
of the dispersive term (−ir1B1) is to tame the oscillations,
especially for p0 near zero or unity.

For a longer GIMF (at fixed ~γ), the taming effect of the dis-
persive term will be even more pronounced and the amplitude
of oscillations will be smaller. In Fig. 7, where ~L is assumed
to be 50π, the “artificial” case of r1 � 0, ~γ � 0.5 (dotted)
oscillates rapidly and with large amplitude. However, for
the real situation where r1 ≈ 2 (and ~γ � 0.5), the rapid oscil-
lation is replaced with a smooth change (dashed line) that
does not move far away from the diagonal virtual line of
p0�ζ � ~L� � p0�ζ � 0�. Once the nonlinearity is increased to
~γ � 1.0, the oscillations reappear, yet with a much lower fre-
quency and smaller amplitude (solid line) compared with the
artificial case of r1 � 0. It is noteworthy that the oscillations in
the solid curve are mainly located in the region of the graph
where the dotted curve does not oscillate much.

In order to examine the effect of the total power injected in
the GIMF on the relative power transmission, the transmission
is plotted as a function of ~γ for the case of ~L � 4.5π in Fig. 8.
The length of the GIMF is chosen in such a way that for the
linear case of ~γ � 0, relative power transmission τ is at its

minimum value of τmin � 1 − 4p0p1 for the three cases of
p0 � 0.5, 0.25, 0.75 shown in Fig. 8. In agreement with our pre-
vious discussions, increasing the power (increasing ~γ) results
in an increase in the value of τ and the maximum transmission
of τmax � 1 is obtained for ~γ ≈ 0.65, nearly independent of the
initial value of p0. As ~γ is further increased, τ decreases again
and follows an oscillatory form as a function of ~γ.

In practical devices, the GIMF is often considerably longer
than �β�1� − β�2��−1; therefore, ~L ≫ 1. In Fig. 9, a scenario
identical to that explored in Fig. 8 is considered, except for
a much longer GIMF with ~L � 100.5π. The main difference be-
tween the cases of ~L � 100.5π in Fig. 9 and ~L � 4.5π in Fig. 8 is
that much lower power (much smaller ~γ) is required for the
GIMF with ~L � 100.5π to switch the relative power transmis-
sion from τmin to τmax. For the case of p0 � 0.25, the required ~γ
for power transmission switching is as low as ≈0.026 as can be
seen in the dashed line in Fig. 9. Another important difference
between the cases of ~L � 4.5π and ~L � 100.5π is that in the
latter case, the value of ~γ at which τmax is obtained is very sen-
sitive to the initial distribution of the power among the modes.

B. Nonlinear MMI With Through Modes
In this subsection, the analysis of Subsection 3.A is extended
to the more realistic case of five propagating modes. As men-
tioned before, this is a realistic scenario for the case of a
C-GIMF at 1550 nm wavelength. The general observations
in this subsection and the similarities and differences with
the two-mode scenario of Subsection 3.A should cover the
overall nonlinear dynamics in most realistic cases of NL-MMI
in GIMFs.

In addition to the difference between the number of modes
in this subsection versus Subsection 3.A, here the initial exci-
tation amplitudes are chosen such that they satisfy Eq. (17)
(otherwise the problem would become intractable). The main
advantage of this choice is that it complies with the configu-
ration of Fig. 1 and can be tested experimentally. Another im-
portant difference is that in Subsection 3.A it was assumed
that p0 � p1 � 1, which resulted in τmax � 1. In a realistic case
where Eq. (17) is applied and the number of guided modes is
finite, some of the power coming from the input SMF is
coupled to the radiation and cladding modes. Therefore, it
can be shown [9] that the maximum transmission is given by

τmax � �1 −Ψ2P�2 ≤ 1; (21)

where Ψ is defined in Eq. (17) and P is the total number of
propagating modes with m � 0: P � 5 in this subsection.

Fig. 7. Same as Fig. 6, except for ~L � 50π, and different choices of ~γ.

Fig. 8. Relative power transmission is plotted as a function of ~γ (thus
the total power) for ~L � 4.5π for the case of LG00 and LG10 modes,
when p0 � 0.5, 0.25, 0.75 at ζ � 0, in solid, dashed, and dotted lines,
respectively. Fig. 9. Same as Fig. 8, except for ~L � 100.5π.
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Therefore, in all the plots shown in this subsection, τmax < 1
and is given by Eq. (21).

In Fig. 10, the relative power transmission is plotted as a
function of the normalized GIMF length ~L, for η � 3�

���
8

p
,

which results in p0 � 0.5. Similar to the two-mode scenario
plotted in Fig. 3, the cases of ~γ � 0 (solid), ~γ � 0.7 (dashed),
and ~γ � 3 (dotted) are analyzed. The linear case (~γ � 0) in
Fig. 10 is very similar to the two-mode case of Fig. 3, except
that τmin and τmax are different due to the power leakage to the
radiation and cladding modes, as explained above. However,
the major difference is that at ~L � 4.5π, ~γ � 0.7 is not nearly
enough to switch the relative power transmission from τmin (at
~γ � 0) to τmax in the five-mode scenario. In other words,
higher power is required in the realistic five-mode scenario
for transmission switching compared with the two-mode sce-
nario. This is intuitively expected, as the presence of the
higher modes results in the distribution of the intensity over
a larger cross sectional area of the GIMF.

Next, the case of p0 � 0.75 for the five-mode scenario is
considered in Fig. 11, which should be compared with the
two-mode scenario in Fig. 4. According to Eq. (17), this case
can be obtained by choosing η � 3. Unlike the case of p0 � 0.5
studied above, there is a strong similarity between the five-
mode and two-mode scenarios in the p0 � 0.75 case. At
~L � 4.5π, ~γ � 0.7 is nearly sufficient to switch the relative
power transmission from τmin (at ~γ � 0) to ≈τmax. This result

is quite important, because η � 3 is more readily achievable
when using standard commercial fibers than such large values
as η � 3�

���
8

p
≈ 5.8. For example, as mentioned before, cou-

pling C-GIMF to SMF-28 at 1550 nm, results in η ≈ 2.2, or cou-
pling 1060XP fiber from Thorlabs catalog to C-GIMF leads to
η ≈ 4.27 at 1060 nmwavelength. The major difference between
the two-mode and five-mode scenarios is that at the higher
value of ~γ � 3, τ experiences a much higher amplitude oscil-
lation as a function of ~L in the five-mode case. The large am-
plitude oscillations in the five-mode scenario for ~γ � 3 are due
to the efficient power transfer from the lowest order mode to
the other four modes Each mode accumulates a different lin-
ear and nonlinear phase as it propagates along the GIMF re-
sulting in large variations in the relative power transmission,
which is a sensitive function of both the amplitude and the
phase of each mode [see Eq. (15)].

Finally, the case of p0 � 0.25 for the five-mode scenario is
considered in Fig. 12, which should be compared with the two-
mode scenario in Fig. 5. This case corresponds to
η � 7�

������
48

p
≈ 13.9, which is very hard to obtain using con-

ventional fibers. Substantial power leakage into the radiation
and cladding modes is observed in the five-mode scenario and
the results contrast sharply from the two-mode scenario in
Fig. 5. Because of the finite number of core-guided modes sup-
ported by the finite GIMF core [see Eq. (6)], which is trun-
cated by the cladding at radius R, some of the power from
the input SMF does not couple to the core-guided modes
and couples to the cladding and radiation modes, as estimated
in Eq. (21) and also discussed in [9]. The power leakage can be
substantial for η ≫ 1, as observed in Fig. 12. There is hardly
any difference between the linear case (~γ � 0) and ~γ � 0.7 in
Fig. 12; however, for ~γ � 3, the relative power transmission
nearly saturates over the entire value of ~L at τmax.

In summary, the NL-MMI related to p0 � 0.75 in the five-
mode scenario closely resembles that of the two-mode sce-
nario presented in Subsection 3.A. This similarity is lost as
the value of p0 is lowered (via increasing η); however, a larger
value of p0 is generally more accessible using commercially
available optical fibers. Fortunately, the power switching dy-
namics (from τmin to τmax) is more desirable for p0 � 0.75 than
p0 � 0.25 in the SMF-GIMF-SMF geometry shown in Fig. 1.

4. SATURABLE ABSORBER USING NL-MMI
In Section 3, the NL-MMI behavior of the SMF-GIMF-SMF
geometry of Fig. 1 was discussed in great detail. Here, the

Fig. 10. Relative power transmission is plotted as a function of the
normalized GIMF length ~L for the case of LG00 through LG40 modes
(five zero angular modes) when p0 � 0.5 at ζ � 0 (η � 3�

���
8

p
), for

~γ � 0 (solid), ~γ � 0.7 (dashed), and ~γ � 3 (dotted). The results should
be compared with Fig. 3 where only two modes, LG00 and LG10, were
considered.

Fig. 11. Same as Fig. 10, except for p0 � 0.75 at ζ � 0 (η � 3). The
results should be compared with Fig. 4 where only two modes, LG00
and LG10, were considered.

Fig. 12. Same as Fig. 10, except for p0 � 0.25 at ζ � 0
(η � 7�

������
48

p
). The results should be comparedwith Fig. 5 where only

two modes, LG00 and LG10, were considered.
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results will be used to explore the application of this geometry
as an SA. Specifically, it is desirable for the SMF-GIMF-SMF
configuration to attenuate low power signals (~γ ≈ 0), but allow
the higher power signals to go through. All analysis performed
in this section is for the realistic case of five-modes (LG00

through LG40), subject to the constraint of Eq. (17) for the
initial excitation amplitudes.

Figure 13 depicts the behavior of the relative power trans-
mission τ as a function of ~γ for a fixed value of ~L � 4.5π in a
SMF-GIMF-SMF configuration, for p0 � 0.5, 0.25, 0.75 at
ζ � 0, in solid, dashed, and dotted lines. The value of ~L is
chosen such that in the linear case, the relative power trans-
mission is at its minimum value. In Subsection 3.B, it was
pointed out that the case of p0 � 0.75 is the most interesting
scenario from an experimental point of view. For p0 � 0.75,
the relative power transmission increases from τmin to τmax ≈
1 monotonically as ~γ is increased from zero to ~γ ≈ 0.75. Be-
yond ~γ ≈ 0.75, τ goes through a few low amplitude oscillations
and saturates at τmax ≈ 1. This is nearly an ideal scenario for
an SA, where the only downside with this design is that τmin is
considerably larger than zero.

For p0 � 0.5 in Fig. 13, a slightly higher value of ~γ is re-
quired compared with p0 � 0.75 to achieve the maximum
transmission; moreover, more oscillations are observed be-
yond the transmission peak value, which may not be a desir-
able feature for an SA. Another important feature of this plot is
the large low-transmission plateau and the sudden rise of τ
near the peak values, which is desirable for pulse shortening
in an SA. The case of p0 � 0.25 is also shown in Fig. 13; the
peak value of transmission in this scenario is only near 50%
due to power coupling to the radiation and cladding modes,
as discussed in Subsection 3.B, making this an undesirable de-
sign. The results in Fig. 13 should be compared with the two-
mode scenario in Fig. 8. A notable feature in Fig. 8 is the large-
amplitude oscillations of τ as a function of ~γ; this behavior is
very different from Fig. 13, where τ was nearly saturated to
τmax beyond ~γ ≈ 0.75 for p0 � 0.75.

In Fig. 14, a similar case to the one discussed in Fig. 13 is
considered, except for a longer GIMF section where
~L � 100.5π. Similarly, this value of ~L is chosen such that, in
the linear case, the relative power transmission is at its mini-
mum value. The most notable differences between the case of
~L � 100.5π in Fig. 14 and ~L � 4.5π in Fig. 13 are that τmax is
obtained at a lower value of ~γ for the longer GIMF design. This
is somewhat expected, given that the nonlinear phase is

cumulative. However, comparing the five-mode scenario in
Fig. 14 with the two-mode case of Fig. 9 shows that a much
higher value of ~γ is required in the five-mode scenario to ob-
tain τmax; therefore, the five-mode and two-mode scenarios
differ substantially from each other.

In Figs. 13 and 14, the value of ~L is chosen such that τ � τmin

is obtained for ~γ � 0. While this may seem a reasonable
choice, this is not required from an SA; rather, all that is re-
quired from an SA is to efficiently discriminate against low
power signals with minimal impact on the high power. There-
fore, it is necessary to examine other possibilities for ~L and
find the most efficient SA that is possible with the SMF-
GIMF-SMF geometry of Fig. 1. A relevant metric for the pulse
power discrimination in an SA is the value of (∂τ∕∂~γ), which
characterizes the sensitivity of an SA to a change in the
pulse power.

Figure 15 shows (δτ∕τ), defined as

�δτ∕τ� � 1
τ
�τj~γ�0.001 − τj~γ�0�; (22)

as a function of the normalized GIMF length. (δτ∕τ) is used as
the metric because it is related to (∂τ∕∂~γ) via �δτ∕τ� ≈
τ−1�∂τ∕∂~γ�δ~γ for δ~γ � 0.001. The normalized length of the
GIMF is chosen to be ~L � 300π � δ ~L, and the horizontal axis
in Fig. 15 is expressed as δ ~L in the range �−π∕2;�π∕2�. The
reason for this limited range in δ ~L is that (δτ∕τ) repeats in
a nearly periodic fashion outside this range, unless δ ~L be-
comes very large. It will be discussed later in Section 5 that

Fig. 13. Relative power transmission is plotted as a function of ~γ
(thus the total power) for ~L � 4.5π for the case of five modes,
when p0 � 0.5, 0.25, 0.75 at ζ � 0, in solid, dashed, and dotted lines,
respectively.

Fig. 14. Same as Fig. 13, except for ~L � 100.5π.

Fig. 15. Relative change in the normalized power transmission in the
SMF-GIMF-SMF geometry defined in Eq. (22) plotted as a function of
δ ~L, where the length of the GIMF section is given by ~L � 300π � δ ~L. A
large positive value of (δτ∕τ) is desirable for saturable absorption. The
plots are presented for η � 2 (solid) and η � 3 (dashed).
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even a seemingly small value of ~γ � 0.001 can translate to
multi-kilowatts of peak power in some commercial GIMFs,
such as C-GIMF. Therefore, our main intention in choosing
δ~γ � 0.001 in Eq. (22) and subsequent figures is to ensure that
our design and observations are relevant for practical
situations.

For both η � 2 (solid line) and η � 3 (dashed line) in Fig. 15,
the maximum value of (δτ∕τ) is obtained at δ ~L ≈ −0.4, while
the large low-transmission plateau already observed in Figs. 13
and 14 at near ~γ � 0 is responsible for the small value of (δτ∕τ)
near δ ~L � 0. The maximum value of (δτ∕τ) is around 1% for
η � 2 and 5% for η � 3. It should be pointed out that SAs
can be used to mode-lock lasers even when their modulation
depth (MD) is as low as 0.5% [27]. MD is defined as the maxi-
mum change in transmission in an SA. Although MD is often
the standard quantity used to assess the performance of SAs,
the large values of MD obtained in the SMF-GIMF-SMF
(between τmin and τmax) can be misleading, because a very
high peak power may be needed to access the full range of
theMD (some numerical valueswill be presented in Section 5).
Therefore, (δτ∕τ) has been used in this paper and is identical
to MD within the reasonably accessible range of pulse peak
powers.

It is required to ensure that the total transmission through
the SMF-GIMF-SMF geometry is not too low; in other words,
the SA is not too lossy near the peak value of (δτ∕τ). In Fig. 16,
the average value �τj~γ�0.001 � τj~γ�0�∕2 is plotted as a function
of δ ~L for η � 2 (solid line) and η � 3 (dashed line). It can be

seen that the average relative power transmission is reason-
ably large near the peak value of (δτ∕τ) of Fig. 15; therefore,
the SA can be regarded as a viable design.

In Fig. 17, (δτ∕τ) is plotted in the same fashion as in Fig. 15,
except for η � 4. The reason separate figures are used to plot
η � 2, 3 and η � 4 is that the vertical scales are different. As
can be seen in Fig. 17, (δτ∕τ) as large as 15% is possible in this
case. While this may seem like a highly desirable SA, the rel-
ative power transmission plot for η � 4 in Fig. 18 shows that τ
is quite small near the peak values of (δτ∕τ). Perhaps an
optimum operation of this device can be accomplished at
δ ~L ≈ −0.3 where δτ∕τ ≈ 9%.

5. DISCUSSION AND CONCLUSION
In this paper, a detailed analysis of the NL-MMI behavior of the
SMF-GIMF-SMF geometry shown in Fig. 1 has been presented.
Recently, this setup was successfully used to create very low-
loss couplers between two SMFswith very differentmode-field
diameters [9,10]. Here, it has been shown that the transmission
through this coupler has a very interesting nonlinear behavior
and can be potentially used for switching purposes or for satu-
rable absorption in all-fiber mode-locked lasers.

The key parameters that affect the NL-MMI in this geometry
are the ratio of the mode-field diameter of the LG00 mode in
GIMF to the mode-field diameters of the SMFs [characterized
by η defined in Eq. (17)]; the length of the GIMF section (char-
acterized by the relative length parameter ~L); the relative non-
linear coefficient ~γ, which incorporates the total power and
nonlinear coefficient of the GIMF; and the total number of
propagating modes in the GIMF.

It was observed that the best performances for switching
and intensity discrimination applications, such as in SAs,
can be obtained when the value of η defined in Eq. (17) is
not too large; η < 4 seems like a reasonable choice. This is
easily achievable for reasonable selection of commercially
available fibers.

Like most other nonlinear devices, the interaction length
plays a very important role in the behavior of the SMF-
GIMF-SMF device. The dimensionless normalized length ~L
has been used throughout this paper, which is the length of
the GIMF normalized by β�1� − β�2�. This normalization factor
is �183 μm�−1 for a C-GIMF operating at 1550 nm. Therefore,
~L � 4.5π, ~L � 100.5π, and ~L � 300π used in this paper trans-
late to L � 2.6 mm, 5.78, and 17.24 cm for the length of the
GIMF section, which are all reasonable lengths for device ap-
plications. For SA purposes, ~L � 300π � δ ~L was explored in
Figs. 15 and 17, where it was realized that some level of fine

Fig. 16. Relative power transmission is shown as function of δ ~L,
where the length of the GIMF section is given by ~L � 300π � δ ~L. τ
presented in this figure is the average value between τj~γ�0.001 and
τj~γ�0. This figure is intended to show that the value of τ is not too
low near the peak value of (δτ∕τ) in Fig. 15. The plots are presented
for η � 2 (solid) and η � 3 (dashed).

Fig. 17. Same as Fig. 15, except for η � 4.

Fig. 18. Same as Fig. 16, except for η � 4.
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tuning of the order of δ ~L ∼ π is required, which is δL ∼ 575 μm
for C-GIMF at 1550 nm wavelength. This situation is not differ-
ent from that of Refs. [9,10], and the fact that the required fine-
tuning range is so small means that it can be easily achieved
by polishing the GIMF to the desired length. It should be em-
phasized that the problem of fine-tuning is not very serious
and the length needs to be adjusted over a maximum one
period of δ ~L ∼ π, because reducing ~L to ~L − π shifts the peri-
odic transmission pattern by one full period. Other pragmatic
approaches can be taken instead of fine-tuning the length. For
example, an ensemble of twenty SMF-GIMF-SMF couplers can
be built around the same average GIMF length. Using this ap-
proach, the value of δ ~L will be uniformly distributed over the
range of �−π∕2;�π∕2� and one of the elements of the ensemble
will likely perform up to the required specification.

The relative nonlinear coefficient ~γ is defined in Eq. (12).
For C-GIMF at 1550 nm wavelength, ~γ � 1.0 corresponds to
a power of ~P ≈ 10.0 MW, given that the nonlinear coefficient
γ (defined for the LG00 mode in GIMF) is smaller than that of
the SMF-28 by a factor η ≈ 2.2. For practical fiber-based mode-
locking applications, this value is unacceptably large. The fea-
sible range of operation for the peak power of a mode-locked
fiber laser is from several to a likely maximum of a few hun-
dred KW of peak power. If the GIMF is made from highly non-
linear material, e.g., chalcogenide glass with a nonlinear
coefficient of up to 1000 times larger than silica, then ~γ �
1.0 will correspond to ~P ≈ 10.0 KW

The feasibility of using the SMF-GIMF-SMF geometry has
been shown for SA applications, even for ~γ � 0.001, in Fig. 17,
which corresponds to ~P ≈ 10.0 KW using C-GIMF and SMF-28
commercial fibers at 1550 nm wavelength. Therefore, it is
probable that the SMF-GIMF-SMF geometry can be used even
with conventional commercially available fibers to mode-lock
fiber lasers at the presently achievable power levels. The main
advantage of this geometry is that it can be designed to oper-
ate at a much higher power level compared with the existing
SAs that exploit nonlinear polarization rotation, semiconduc-
tors, or carbon nanotubes. Therefore, it might offer a very at-
tractive solution for scaling up the pulse energy and peak
power in mode-locked fiber lasers that are currently limited
by the existing SA technology.

Throughout this paper, it was observed that having a
smaller number of propagating modes in the GIMF is benefi-
cial, especially in the design of an SA. While specific designs
need to be carefully analyzed using the formalism laid out in
this manuscript, this can be taken as a general guideline and
highly multimode GIMFs should be avoided if possible. We do
not think that the quality and the telecommunication band-
width of the GIMF (e.g., due to the centerline defect [28])
has any appreciable effect on the NL-MMI behavior and the
SA performance of the SMF-GIMF-SMF geometry.

Finally, we would like to comment on the possibility of ex-
citing nonzero angular momentummodes, which are excluded
from our analysis. It is possible to excite m � �1 modes via
coupling them tom � 0modes by bending the GIMF. In order
for the power exchange to operate efficiently in a resonant
fashion, the phase mismatch between the m � 0 and m �
�1 must be compensated for by the bend; e.g., long-period
gratings are optimized to provide this phase-matching condi-
tion [17]. However, in a GIMF, the m � 0 and m � �1 modes
always belong to different mode groups with a very large

mismatch in their propagation constants, according to
Eq. (4). Therefore, a very small bending radius (submillimeter
for C-GIMF) is required for efficient phase matching. There-
fore, coupling between m � 0 and m � �1 will not be an ef-
ficient process in GIMFs, unless assisted by specialty devices
such as long-period gratings [17].

Coupling between between m � 0 and m � �2 is induced
via the random variations in the diameter of the GIMF, caused
by manufacturing errors [29], and can even happen within the
same mode group with minimal phase matching issue. While
this can be minimized by selecting a high quality GIMF, in
practice this should not cause any issues for GIMFs shorter
than approximately one meter in length.

It has also been previously shown that fabrication errors
due to the misalignment of the fibers can be minimized to
the extent where they do not have a noticeable impact on
the linear operation of the device [10]. Similar robustness is
expected in the nonlinear regime of operation.
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1. Introduction

The nonlinear switching (NLS) properties of waveguide arrays and multicore fiber couplers
have recently attracted considerable attention for mode-locked fiber laser applications [1–5].
In the linear regime, where optical power is low, neighboring waveguides exchange optical
power periodically; the linear coupling is caused by the modal overlap of adjacent waveguides
and is most efficient when adjacent modes have identical propagation constants [6]. In the
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nonlinear regime, where optical power is high, nonlinear effects alter the refractive index of
each waveguide and consequently detune the effective propagation constants of the modes,
reducing the power exchange efficiency between adjacent cores [7]. By only retaining the light
in the launch waveguide at the output, it is possible to achieve power-dependent transmission
and intensity discrimination required for mode-locked operation [1, 2].

Recently, it was shown that nonlinear multimodal interference in a graded-index multimode
fiber has intensity discrimination properties as well and can be used for NLS [8]. However, it
was observed that a much higher power is required for NLS based on the nonlinear multi-modal
interference in multimode fibers compared to the NLS based on the nonlinear mode coupling
in multicore fibers. Moreover, the NLS quality of the multimode fiber was shown to be inferior
to those reported for multicore fibers.

The objective of this manuscript is to highlight the differences between the NLS behavior in
multimode versus multicore waveguides. Several key questions are addressed: Why is higher
power required to achieve NLS in multimode versus multicore waveguides? What is the main
reason behind the inferior NLS quality in multimode waveguides? Is it because of the cross-
phase modulation (XPM) and four-wave mixing (FWM) terms? Or because of the way the
modes are excited in the multimodal junctions?

Fig. 1. (a) The refractive index profile of the double-waveguide nonlinear coupler is shown.
(b) For weakly coupled waveguides (d = 10λ ), the even and odd mode profiles Fe(x) and
Fo(x) in Picture-A are sketched above the index profile and F1(x) and F2(x) in Picture-B
are sketched below the index profile. (c) is similar to (b), except the waveguides are strongly
coupled for d = 2λ . Results are shown for the TE polarization, where the transverse electric
field vector is pointing in the vertical direction in these figures.

In order to present the arguments in a concrete model, NLS is explored for the Transverse
Electric (TE) polarization in a pair of identical one-dimensional waveguides shown in Fig. 1(a).
The design parameters are such that each waveguide supports only a single TE-polarization
mode, with ncl = 1.5, nco = 1.506, and a = 3λ , where λ is the optical wavelength. We refer to
the spatial transverse mode profile of a “single” waveguide as Fw(x) throughout this paper.

In the linear regime, light propagation through this double-waveguide is commonly treated
using the standard coupled-mode theory, which is valid as long as the waveguides are weakly
coupled [6]. In Fig. 1(b) where the separation between the waveguides is d = 10λ , the stan-
dard coupled mode theory can be reliably applied to the individual modes of the waveguides
whose profiles are identified as F1(x) and F2(x). The overlap between these modal profiles de-
termines their coupling. However, a rigorous approach, which is applicable to both weak and
strong coupling, is based on directly solving for the even and odd supermodes of the double-
waveguide and treating the light propagation as a modal interference problem. The even and
odd eigenmodes of the full index profile are sketched as Fe(x) and Fo(x) in Fig. 1(b). When
the waveguides are only weakly coupled, the two approaches can be identically mapped to one
another by F1,2 = (Fe ±Fo)/

√
2. We will take this relationship as the definition of F1(x) and

F2(x). Therefore, for the case of the weakly coupled waveguides, we can write F1 ≡ F2 ≡ Fw,
where ≡ implies similarity up to a shift in the x-coordinate.

The case of the strongly coupled waveguides with d = 2λ is shown Fig. 1(c), where Fe(x)
and Fo(x) profiles are sketched as the exact eigenmodes of the system. The standard coupled
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mode theory is not applicable here , and F1(x) and F2(x) profiles obtained from F1,2(x) = (Fe ±
Fo)/

√
2 are far from the eigenmodes of the individual waveguides. In this case, F1 �≡ F2 �≡ Fw.

In this paper, the NLS behavior of the double-waveguide of Fig. 1(a) is studied as a function
of the waveguide separation. This analysis provides an interpolation from the multicore to the
multimode setup as the two waveguides are brought closer together and eventually merged.
The NLS problem is initially treated using the generalized nonlinear Schrödinger equation
(GNLSE) applied to the even and odd supermodes of the double-waveguide (Fe and Fo), which
are the exact eigenmodes of the Helmholtz equation. This treatment is rigorous and is referred
to as Picture-A . The nonlinear propagation problem is then transformed to the language of the
F1(x) and F2(x) profiles, referred to as Picture-B. Although, F1(x) and F2(x) are not eigen-
modes of the individual waveguides and take their meaning only from Fe(x) and Fo(x), the
nonlinear propagation problem can be recast in their language with no loss of generality and
both Pictures are equally valid. However, it will be seen that Picture-B is more suitable for
the purposes of this paper, as the role of the XPM/FWM versus self-phase modulation (SPM)
terms and the initial modal excitations are more clear in this Picture. This holds especially true
in the limit of weakly coupled waveguides, where the XPM/FWM terms are completely absent
in the nonlinear propagation equation in Picture-B.

2. The formulation and results

In what follows, only the continuous wave (CW) limit is considered, in order to reduce the
complexity of the analysis and to ensure that the physics is not buried under phenomena that
are not essential in conveying the intended message. However, the temporal effects can be
easily included and the main observation will not be affected . The observations are general and
equally apply, at least qualitatively, to Transverse Magnetic (TM) waves, and optical fibers.

In the coupled waveguide problem of Fig. 1(a), the lowest order modes are a pair of z-
propagating bound states with the even and odd spatial profiles Fe(x) = Fe(−x) and Fo(x) =
−Fo(−x) being invariant along the y-axis. The symmetries of these two profiles are dictated by
the parity symmetry of the refractive index profile n(x) = n(−x) and its invariance along the
y-axis. The GNLSE describing the CW evolution of light in the two-mode double-waveguide
in Picture-A can be written as [9, 10]

∂Aμ

∂ z
= iδβμAμ + i

(n2ω0

c

)
∑

ν ,κ ,ρ=e,o
fμνκρAνAκA�

ρ , μ = e,o, (1)

where Aμ(z) is the slowly varying envelope of the electric field of the μth mode (even or odd
mode) with the propagation constant βμ . Pμ = |Aμ |2 is the linear power density carried by this
mode per unit y-length. The indices can take the value of e or o corresponding to even and
odd modes. We also define δβe = −δβo = βe −βref, where βref = (βe +βo)/2. The nonlinear
coupling coefficients are given by

fμνκρ =
∫ ∞

−∞
FμFνFκFρ dx, (2)

where the mutually orthogonal spatial profiles are assumed to be normalized according to∫
F2

e dx =
∫

F2
o dx = 1. n2 is the nonlinear index coefficient, and ω0 is the carrier frequency.

fμνκρ is a fully symmetric tensor, and feooo and feeeo vanish due to the parity symmetry.
In Fig. 2(a), δβe is plotted as a function of the normalized separation d/λ between the

waveguides. At a large separation, the even and odd modes are nearly degenerate in the value
of the propagation constant. However, δβe rapidly increases as the waveguides are brought
closer together and the degeneracy between the even and odd modes is strongly broken.

In Fig. 2(b), the non-zero nonlinear coupling coefficients of the even and odd modes in
Picture-A are plotted as a function of the normalized waveguide separation. The nonlinear
coupling coefficients feeee, feeoo and foooo are equal when the two waveguides are far apart and
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Fig. 2. (a) The splitting between the propagation constants of the modes increases signif-
icantly as the waveguides are brought closer together. (b) The nonlinear coupling coeffi-
cients for the even and odd modes are shown as a function of the normalized separation,
where their degeneracy is removed when the waveguides are strongly interacting.

hence, weakly coupled. However, as the two waveguides get closer , the difference between the
nonlinear couplings increases. Other elements of the fμνκρ tensor not shown in Fig. 2(b) are
related to the plotted elements by symmetry relationships of the tensor; e.g., feoeo = feeoo.

The large values of the XPM/FWM terms in Picture-A complicate the analysis of the NLS.
In Picture-B, the nonlinear propagation is more intuitive and the XPM/FWM terms are absent
in the limit of weakly coupled waveguides. In Picture-B, the field amplitudes are defined as
Ã1,2 := (Ae ±Ao)/

√
2. The GNLSE Eq. (1) is transformed to

∂ Ã j

∂ z
= iδβeÃ j′ + i

(n2ω0

c

)
∑

k,l,m=1,2

f jklmÃkÃl Ã
�
m, j = 1, j′ = 2, or j = 2, j′ = 1, (3)

where the nonlinear coefficients f jklm are given by

f1111 = f2222 = ( feeee + foooo +6 feeoo)/4, (4)

f1122 = ( feeee + foooo −2 feeoo)/4, f1112 = f1222 = ( feeee − foooo)/4.

The results of Eq. (4) are consistent with the field profiles defined in Picture-B as F1,2 =

(Fe ± Fo)/
√

2, given f jklm =
∫

FjFkFlFm dx with j,k, l,m = 1,2. f jklm is a fully symmetric
tensor. It remains invariant if all indices valued at 1 are changed to 2 and vice versa; e.g.,
f1112 = f1222.

Fig. 3. The nonlinear coupling coefficients in Picture-B are shown as a function of d/λ .
The SPM coefficients in (a) are much stronger than the XPM/FWM coefficients in (b).

The non-zero elements of f jklm are plotted in Figs. 3(a) and 3(b). The SPM nonlinear cou-
pling terms f1111 and f2222 are larger than the XPM/FWM terms by more than an order of
magnitude, even when the two waveguides are merged. This behavior is dictated by the rela-
tionships presented in Eq. (4) and the near degeneracy of fμνκρ in Fig. 2(b), especially at weak
coupling. Thus, in Picture-B, the nonlinear switching is dominated by SPM, which is easier to
analyze.

The NLS behavior of the waveguide coupler is shown in Fig. 4. A multicore NLS configura-
tion is sketched in Fig. 4(a), where the beam is injected into the two-core switch using an input
coupler waveguide and is collected at an output coupler. The length of the nonlinear switch is
equal to the half-beat-length Lh, so that at low powers, all the injected light is transferred to the
second waveguide and no power is collected at the output. However, when the input power is
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Fig. 4. (a) A sketch of the NLS device. (b) The relative power transmission is plotted
as a function of γ . The solid (black) curve corresponds to weakly coupled waveguides
with d/λ = 10. The dashed (red) and dotted (blue) NLS curves correspond to the strongly
interacting merged waveguide with d/λ = 0, where in case-1 the injected and collected
beam profiles are F1(x), while in case-2, the injected and collected beam profiles are Fw(x).

increased, the nonlinearity detunes the coupling between the two waveguides and all the power
is collected at the output port. This behavior is shown in Fig. 4(b), where the transmission τ is
plotted as a function of the effective nonlinear coefficient defined as γ = n2ω0P̃/(cδβe), where
P̃ is the linear optical power density injected from the input coupler.

In Fig. 4(b), the solid (black) line shows the NLS behavior of the double-waveguide coupler
when the normalized separation is d/λ = 10. In this case, the injected and collected field pro-
files are assumed to be those of a single waveguide identical to the waveguides in the nonlinear
coupler. The relative transmitted power can be obtained from [8]

τ =
1

P̃2
| ∑
i=1,2

Ã�
i (0)Ãi(Lc)|2 = 1

P̃2
| ∑

μ=e,o
A�

μ(0)Aμ(Lc)|2, (5)

where Lc is the total length of the nonlinear switch. In this case, the input boundary conditions
(BC) for the GNLSE of Eq. (3) are Ã1(0)/

√
P̃= 1 and Ã2(0)/

√
P̃= 0. These BCs hold because

the injected and collected beam profiles are Fw(x) and is mode-matched to F1(x) of Picture-B,
which is due to the weak coupling between the two waveguides.

When the waveguides are brought closer together, F1(x) can no longer be approximated as
Fw(x), as can also be seen in Fig. 1(c). In Fig. 4(b), the dashed (red) line shows the NLS behavior
of the double-waveguide coupler, when the normalized separation is d/λ = 0, which is the limit
of a standard single-core multimode coupler. In this case (case-1), the BCs are assumed to be
Ã1(0)/

√
P̃ = 1 and Ã2(0)/

√
P̃ = 0. However, given the difference between F1(x) and Fw(x) in

this strong coupling regime, it is clear that these BCs cannot be achieved using an input coupler
waveguide identical to those used in the nonlinear switch. In fact, the injected and collected
beam profiles must be modified by additional optics (such as a spatial light modulator) or must
come from special waveguides in order to mode-match to F1(x). Even if F1(x) is used for the
injection, it might be more desirable to collect the beam directly from the nonlinear coupler in
the form of Fw(x). In this case, it is possible to slightly change the device length away from Lh

to improve the coupling efficiency at high power at the expense of a perfect attenuation at low
power (linear case). This is a reasonable trade-off because efficient transmission at high power
is desired for mode-locked lasers while some level of compromise in nonlinear modulation
depth is acceptable.

The difference between the dashed (red) line of d/λ = 0 compared with the solid (black)
line of d/λ = 10 is caused by the XPM/FWM terms; if the XPM/FWM terms in Fig. 3(b) are
artificially set to zero, the dashed (red) line in Fig. 4(b) falls almost exactly on the solid (black)
line. The XPM/FWM terms nearly double the switching threshold in units of γ . However, given
that δβe is nearly 555 times larger for d/λ = 0 than d/λ = 10 [see Fig. 2(a)], the switching
threshold in the merged waveguides will become larger by the same factor when expressed in
terms of power density instead of γ , because a factor of δβe is embedded in the definition of γ .
The merged waveguides will have to be shorter by a factor of δβe, because in Picture-B, δβe

plays the role of the coupling between Ã1 and Ã2 as can be seen in Eq. (3), and because Lc must
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Fig. 5. The relative power transmission is plotted as a function of γ for (a) Lc = Lh versus
Lc = 3Lh and (b) for Lc = 15Lh. The NLS quality for Lc = 3Lh and Lc = 15Lh are lower.

equal the half-beat-length Lh.
Injecting the double-waveguide coupler with a complex beam profile of F1(x) to obtain the

Ã1(0)/
√

P̃ = 1 and Ã2(0)/
√

P̃ = 0 BCs may not be possible. In many situations, it is more
practical to inject the beam from a waveguide that is identical to one of the waveguides in
the multicore coupler. For the merged waveguides (d/λ = 0), this means that Fw(x) is used
as the injected and collected beam, instead of F1(x). We refer to this as case-2 and the NLS
curve is shown as dotted (blue) in Fig. 4(b). Because the injected and collected beams are not
properly mode-matched to the input and output couplers, respectively, both modes are excited
(with different powers) and we need to use Ã1(0)/

√
P̃≈ 0.95 and Ã2(0)/

√
P̃≈ 0.29. Moreover,

approximately 1.7% of the injected power is coupled to radiation modes. The modulation depth
in the NLS curve in Fig. 4(b) for case-2 in dotted (blue) is lower because of the injection beam
profile, resulting in a lower quality NLS.

We note that a linear switch can fully transfer the power from one waveguide to another if
Lc = nLh, where n is an odd integer. Therefore, all such linear switches are equivalent. However,
in the nonlinear case the quality of the NLS is reduced for n> 1 as shown in Fig. 5 and undesired
oscillations are observed before γ is sufficiently large for full power switching.

3. Conclusions

It is argued that the switching power threshold in nonlinear multimode junctions is larger than
in multicore junctions, mainly because the value of δβe is substantially larger in the former
case. The XPM/FWM terms also play a role in setting the power threshold but their impor-
tance is orders of magnitude lower than that of δβe. When expressed in proper dimensionless
parameters, the NLS curves are almost identical in a multimode and a multicore junction if the
XPM/FWM terms are artificially switched off.

The presence of the XPM/FWM terms do not seem to play any essential role in the quality
of the nonlinear switching curve of the multimode or multicore systems, especially in the value
of the modulation depth. Rather, injection of the right combination of the modes at the input
and the collection of the right combination of the modes at the output are the main factors
behind the quality of the NLS curves. Creating the proper injection profile is often trivial in a
weakly-coupled multicore waveguide; however, obtaining the right combination of the modes in
a multimode junction is difficult, if not impossible, to achieve. Therefore, multimode junctions
show lower quality NLS curves. This finding agrees with the observations reported in Ref. [8]
and provides an intuitive explanation for those results.

Finite element method has been used to calculate the spatial profiles and propagation con-
stants of the modes. Embedded nonlinear differential equation solvers in Mathematica have
been used for the NLS simulations.
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1. INTRODUCTION
The operation of a mode-locked laser requires a form of inten-
sity discrimination otherwise known as saturable absorption
[1]. Common saturable absorbers (SAs) include semiconduc-
tor SA mirrors (SESAMs) [2], carbon nanotubes [3], graphene
[4], Kerr lensing [5], and nonlinear polarization rotation (NPR)
[6]. Desired attributes of SAs include fast response time
(relaxation time), stability, long-term reliability, ease of use,
appropriate saturation fluence, and low loss [7].

For mode-locked fiber laser applications, fully integrable
SAs are desired in order to take full advantage of a robust
alignment-free fiber cavity. Common fiber-integrable SA solu-
tions have deficiencies that limit their usefulness for mode-
locked fiber laser applications: SESAMs generally have
picosecond response times, making them less desirable for
ultrashort pulse generation, and their nonsaturable losses
can result in excessive heating [8]. The long-term reliability
of carbon nanotube- and graphene-based SAs when exposed
to intense optical pulses is at best questionable [9], and both
are limited in modulation depths. SAs based on NPR are very
sensitive to the slightest perturbation of the fiber cavity,
making them unsuitable outside the laboratory.

Another problem with the present SA technology concerns
the rapid growth in the maximum achievable pulse energy and
peak power in mode-locked fiber lasers over the past decade
[10–12]. SAs are becoming a limiting factor in scaling up the
pulse energy and peak power to higher values. SESAMs, car-
bon nanutubes, and graphene will likely not be suitable for
ultrahigh pulse energies due to heat generation and long-term
reliability. The periodic SA curve in a NPR SA with respect to
the pulse power and its sensitivity to environmental perturba-
tions makes this technique unsuitable for ultrahigh-peak-
power mode-locked lasers.

Nonlinear mode coupling in waveguide arrays (NMCWA),
including multicore fiber implementations, offers an attractive
alternative that addresses most of the limitations faced by
common SAs. A dual-core fiber laser geometry as an

embedded SA was originally proposed by Winful and Walton
[13]. Since then, several theoretical studies have been con-
ducted on nonlinear mode coupling in semiconductor coupled
waveguide arrays [14–16], and multicore optical fibers [17,18].
More recently, a seven-core tapered optical fiber was ex-
plored in the nonlinear regime, and it was shown to have
the potential to be used as an SA [19].

A mode-locked fiber laser using an AlGaAs waveguide array
SA was recently demonstrated experimentally [20]. This dem-
onstration clearly serves as a convincing experimental proof
of concept for the potential application of NMCWA as an SA.
However, for practical device applications and improved effi-
ciency, the insertion loss of the waveguide array needs to im-
prove. An all-fiber SA in the spirit of [13,17,18] seems like an
ideal solution to the insertion loss problem, because it can be
easily spliced to other components in the fiber cavity.
Although semiconductor arrays benefit from a larger nonlin-
ear coefficient resulting in desirably short SAs, fibers made
from chalcogenide glasses with nonlinear coefficients of up
to 1000 times larger than silica can provide similar perfor-
mances [21,22]. In addition, the nearly instantaneous response
of nonlinearities in optical fibers is ideal for ultrashort pulse
generation [22,23].

In this paper,we study the performance of themulticore SAs
as a function of the number of waveguide cores. Many-core
geometries have been the center of attention in NMCWA
SAs; e.g., the NMCWA studied in [14] has 41 coupled wave-
guides.Weexplore andcompare the saturable absorption char-
acteristics of two-, three-, and five-core one-dimensional (1D)
arrays and the seven-core hexagonal array illustrated in Fig. 1.
The main question that is addressed in this paper is whether
increasing the number of cores improves the saturable absorp-
tion characteristics of these nonlinear multicore arrays.

The results indicate that the performance of all these SAs is
comparable and not much is gained, if anything, by going from
a two-core nonlinear coupler geometry to a higher number of
cores. This observation is supported by the similarity of the
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saturable absorption curves, as well as comparable pulse
characteristics obtained from the simulation of a generic
mode-locked fiber laser cavity. In the latter case, these SAs
are placed in a fiber laser cavity, in which self-starting stable
mode-locked pulses are generated. According to the results,
one can benefit from the simpler setup of a two-core fiber with
optimized parameters to get the desired output mode-locked
pulses instead of using the more complex multicore fibers.

In the following, for each multicore fiber SA in Fig. 1, the
optical beam is launched in the launch core identified with a
darker shade and is collected from the same core at the other
end after propagating through the length of the SA. The
dependence of the transmission through the multicore fiber
on the optical power serves as the desired saturable absorp-
tion mechanism.

2. DISCUSSION
In the linear regime where optical power is low, neighboring
waveguides exchange optical power periodically; the linear
coupling is caused by the modal overlap of adjacent wave-
guides and is most efficient when the adjacent modes have
identical propagation constants [24]. In Fig. 2, the transmis-
sion through the multicore arrays of Fig. 1 is shown in the lin-
ear regime as a function of the normalized length L relative to
~c−1; ~c is the linear coupling coefficient between adjacent cores
and is assumed to be the same among all neighboring cores in
a given geometry. The half-beat length Lc is defined as the dis-
tance over which the energy is maximally exchanged from the
launch core to the neighboring cores and depends on the num-
ber of fiber cores and the geometry.

It can be seen that the half-beat length of a three-core fiber
is shorter than the two-core fiber, because its launch core is
coupled to “more” side cores with the same strength and can
exchange the optical power more efficiently. The linear dy-
namics in the case of five cores is a bit more complex due

to the differing power exchange efficiencies of the side cores,
but the first minimum happens for only a slightly longer SA
device. In the case of the seven-core hexagonal array, the cen-
tral core couples to six cores in the outer ring, resulting in a
rapid exchange of optical power and shorter half-beat length;
however, the power in the central core always remains larger
than zero where the minimum value of transmission is
1∕7 ≈ 14.3%. In all these cases, the half-beat length is inversely
proportional to the coupling strength and is given by
~cLc � ξn�π∕2�, where ξn is a numerical coefficient for the
n-core scenarios studied here. We have ξ2 � 1, ξ3 �
1∕

���
2

p
≈ 0.71, ξ5 � 4∕

������
27

p
≈ 0.77, and ξ7 ≈ 0.378.

In the nonlinear regime where optical power is high,
self-phase and cross-phasemodulation (SPM and XPM) effects
alter the refractive index of each waveguide and consequently
detune the effective propagation constants of the modes,
reducing the power exchange efficiency between adjacent
cores [25]. In other words, if high power is launched into a
waveguide, the effective couplings to neighboring cores are re-
duced and the light remains mainly in the launch core. If the
total length of the coupler in each case is chosen to be equal
to the half-beat length, for anoptical pulse transmitting through
the fiber array, its low intensity sides are efficiently channeled
to the adjacent cores, while its high intensity center peak re-
mains in the launch core, resulting in a power-dependent trans-
mission and intensity discrimination [13,14]. This saturable
absorption feature can be used to produce the required pulse
shaping for stable and robust mode-locked pulse trains.

The differential equation describing the propagation of the
electric field in the nth core of a multicore fiber nonlinear
coupler, where only the interactions between the nearest
neighbors are considered, is given by

∂En

∂ζ
� i

X
~n

E ~n � i~γnjEnj2En � i
X
~n

μn; ~njE ~nj2En: (1)

En is the electric field envelope normalized to the pulse peak
power P0 at the entrance of the launch core. The ~n sums are
over the cores adjacent to the nth core. The propagation dis-
tance is rescaled to ζ � ~cz. ~γn � γ�nP0∕~c is a dimensionless
parameter characterizing the nonlinear strength, where γ�n
is the SPM coefficient of the nth core and μn; ~n is the XPM co-
efficient between the nth core and the adjacent cores. The
XPM terms are much smaller than the SPM terms and are thus
neglected, i.e., μn; ~n ≈ 0. The dispersion and loss of the fiber
coupler can be neglected if the SA length is sufficiently
smaller than its dispersion length and effective length [23].

The nonlinear consequences of the coupled beam propaga-
tion in multicore arrays have been previously explored in de-
tail, e.g., in [26]. Here, we borrow from these studies to obtain
the saturable absorption curves of the multicore arrays of
Fig. 1. The length of each SA array is assumed to be equal
to the half-beat length to ensure minimum transmission in
the low-power linear regime. The saturable absorption curves
are shown in Fig. 3 where the transmission through the launch
core of the multicore SA array is plotted as a function of the
normalized nonlinear strength ~γ, which is assumed to be the
same for all cores. The saturable absorption is dictated by a
competition between the linear coupling term i

P
~nE ~n versus

the nonlinear SPM term i~γnjEnj2En in Eq. (1), and the transi-
tion from low transmission to high transmission occurs when
these two terms are comparable.

Fig. 1. Two-, three-, and five-core 1D arrays and the seven-core hex-
agonal array are shown in a fiber-optic geometry. All cores are
assumed to be identical in a given geometry. The launch core is iden-
tified with a darker shade.

Fig. 2. Transmission through the two-core (solid black), three-core
(dashed red), and five-core (dotted orange) fiber 1D arrays and the
seven-core hexagonal array (dashed–dotted purple) is shown as a
function of the normalized length in the linear regime.
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The three-core fiber SA has two adjacent cores coupled to
its launch core and consequently has a larger linear coupling
term compared with the two-core scenario; therefore, more
optical power (larger SPM term) is required to overcome
the linear coupling term. That is why the three-core SA re-
quires slightly higher power for nonlinear saturation. The
five-core and three-core scenarios are nearly identical, be-
cause even in the five-core scenario, the launch core is only
adjacent to two neighboring cores. The saturable absorption
curves for a higher number of cores in 1D linear arrays are
practically identical to the five-core SA.

For the seven-core hexagonal array SA, the nonlinear SPM
term must overcome the linear coupling to six adjacent cores
and requires higher normalized nonlinearity to saturate the
SA. However, the SA curve closely resembles those of 1D ar-
rays and can be mapped to the 1D saturable absorption curves
by adjusting the core-to-core ~c coefficient. In fact, if SA devi-
ces are chosen at the same length, where ~c must inevitably be
smaller for the seven-core array, the saturable absorption
curves for all the geometries in Fig. 1 will be nearly identical
as a function of the input power. This can easily be seen if the
“horizontal scale” for the seven-core SA curve in Fig. 1 is re-
scaled by a factor of approximately 2∕6 to compensate for the
six adjacent cores versus the two adjacent cores in the three-
core fiber. The SA curves nearly overlap after such a rescaling.
This fact will result in nearly identical pulse characteristics
in the mode-locked cavity simulations of Fig. 4, as will be
discussed shortly.

There is another notable difference in the seven-core SA:
the transmission initially drops to zero at finite ~γ before satu-
rating at higher power. This effect is due to the complex
coupling pattern in the seven-core geometry. A nearly mono-
tonic increase can be artificially created by shortening the
fiber below the half-beat length at the expense of a smaller
modulation depth.

To study the mode-locking behavior of the multicore array,
it is placed within the mode-locking optical cavity. A typical
passive mode-locked fiber laser consists of an active single-
mode fiber with a bandwidth-limited gain, which compensates
for the energy loss in the cavity, and an intensity discrimina-
tion device as an SA. When the interactions of the attenuation,
chromatic dispersion, nonlinearity, and bandwidth-limited

gain in the optical fiber cavity are combined with the intensity
discrimination, a train of mode-locked pulses is formed from
white noise after several numbers of round trips in the cavity.
These interactions are captured by two sets of equations: one
is the nonlinear Schrödinger equation governing the pulse
propagation in the cavity, while the other is Eq. (1), describing
the saturable absorption.

The pulse propagation in the cavity is given by [27]

∂A
∂z

� −αA� i
2
∂2A
∂T2 � iηjAj2A� g�z�

�
1� τ

∂2

∂T2

�
A; (2)

where A�z; T� is the normalized electric field envelope, z is the
propagation distance along the fiber, and T represents the
time measured in the retarded frame of the pulse normalized
by a constant T0, which is the expected pulse duration. A�z; T�
is normalized by the peak power of the fundamental soliton
Pfs � jβ2j∕�γT2

0�, where β2 is the group velocity dispersion
of the fiber, and γ is the fiber nonlinear coefficient [23].

It is also implicitly assumed that the wavelength of the pulse
λ0 � 1.55 μm falls within the anomalous-dispersion regime of
the fiber. The propagation distance z is scaled to the
dispersion length LD � T2

0∕jβ2j, and η is the dimensionless
cavity nonlinear coefficient given by η � γPfsLD. The normal-
ized attenuation is considered through α, while the bandwidth-
limited gain of the cavity is described by the parameters g�z�
and τ. The dimensionless parameter τ controls the pulsewidth
in the mode-locking process and is given by τ � 1∕�ΔωT0�2,
where Δω � �2πc∕λ20�Δλ is the spectral gain bandwidth
and Δλ is the gain bandwidth [28]. The gain saturation g�z�
is given by

g�z� � 2g0
1� ‖A‖2∕e0

; (3)

where g0 and e0 are the pumping strength and the cavity
saturation energy, respectively, and ‖A‖2 � R∞

−∞ jAj2dT is
the pulse energy.

The simulations are based on Eq. (2), while Eq. (1) is ap-
plied in every round trip of the laser cavity. The coupling ef-
ficiency of the cavity to the launch core of the multicore SA is
assumed to be 100% on both the entrance and the exit ports;
therefore, A in Eq. (2) becomes E at the entrance in the launch
core of the multicore geometry in Eq. (1) and vice versa at
the exit.

Fig. 3. Nonlinear transmission through two-core (solid black), three-
core (dashed red), five-core (dotted orange) fiber 1D arrays and the
seven-core hexagonal array (dashed–dotted purple) is shown as a
function of the normalized nonlinear strength ~γ, which is assumed
to be the same for all cores. The length of each SA array is chosen
to be equal to the half-beat length.

Fig. 4. Normalized peak power of the mode-locked pulses is shown
as a function of the length the SA, where the core-to-core coupling
coefficients c are adjusted so that the length of the SA is equal to
the half-beat length.
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For the mode-locking cavity simulations, the initial pulse
conditions are assumed to be low-amplitude noise fluctua-
tions. The cavity length is 5 m, while the rest of the parameters
used are T0 � 114 fs, α � 0.05, Δλ � 35 nm, g0 � 0.39, and
e0 � 1 [28]. We also have β2 � −0.0153 ps2∕m resulting in
LD � 0.84 m. The nonlinear coefficient of the cavity is chosen
as γ � 1.7 km−1 W−1. The nonlinear coefficient of the SA is
assumed to be γ� � 0.34 m−1 W−1, which can be obtained
by using a chalcogenide glass fiber [21].

Figure 4 shows the normalized power of the mode-locked
pulses after 100 round trips in the laser cavity, resulting in full
convergence, as a function of the length the SA. For each
length (and for each SA), the core-to-core coupling coeffi-
cients ~c are adjusted so that the length of the SA is equal
to the half-beat length for optimum performance. This choice
of the coupling coefficients ensures that the power is maxi-
mally transferred from the launch core to the other cores
in the linear regime. In practice, the core-to-core coupling co-
efficients ~c can be designed and controlled via core-to-core
separations. As we discussed above, the saturable absorption
curves for all multicore arrays studied here are nearly identi-
cal when the SAs are of the same length. Therefore, it should
come at no surprise that the normalized pulse peak power is
nearly the same for all these SAs as shown in Fig. 4.

In summary, the results in Figs. 3 and 4 show that nearly
identical performance is expected from the geometries that
are explored in this manuscript. While that results are seem-
ingly generic for popular SA geometries, we emphasize that
this study is not exhaustive. An infinite number of multicore
geometries can be constructed even with nonuniform core-to-
core couplings and nonidentical core sizes applied to many
different choices of laser parameters. Therefore, the main
conclusion one can draw from this study is that when an
NMCWA is to be used as an SA, it is important to verify
whether multiple cores yield any tangible performance bene-
fits besides making the device unnecessarily more complex.
Future efforts will focus on comparisons between multimode
and multicore all-fiber SA devices [29].
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Abstract: We report on the generation of new wavelengths, mediated by
the stimulated Raman scattering process and extending over two octaves
covering 523 to 1750 nm wavelength range, in a standard telecommunica-
tion graded-index multimode optical fiber. Despite the highly multimode
nature of the pump, the Raman peaks are generated in specific modes of
the fiber, confirming substantial beam cleanup during the stimulated Raman
scattering process.
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1. Introduction

Stimulated Raman scattering (SRS) is a well-known nonlinear process with numerous appli-
cations including optical amplifiers, tunable lasers, spectroscopy, meteorology, and optical co-
herence tomography. SRS was first observed in silica glass fibers in 1972 by Stolen et al. [1].
They used a frequency-doubled, pulsed, Nd:YAG laser operating at the 532 nm wavelength to
pump a single-mode optical fiber and observed Stokes emission at 545 nm. Since then, several
groups have reported the observation of SRS in optical fibers using various configurations. For
example, Cohen and Lin [2] generated 6 cascaded Raman peaks in a silica fiber, pumped by a
mode-locked, Q-switched, Nd:YAG laser operating at 1064 nm. Rosman [3] observed 15 or-
ders of cascaded Raman peaks by pumping a silica fiber at 532 nm with a frequency-doubled
Nd:YAG laser. Other configurations involving unconventional fibers have been used for ex-
treme Raman-comb generation. For example, Couny et al. [4] demonstrated the generation of
a Raman comb spanning wavelengths from 325 nm to 2300 nm in a 1m-long hydrogen-filled
hollow-core photonic crystal fiber.

In this article, we report on the generation of new wavelengths, mediated by the SRS process
and spanning over two octaves, in a standard graded-index multimode fiber (GIMF). The GIMF
is pumped at a wavelength of 523 nm, and an optical-frequency Raman comb is generated on the
Stokes side of the pump. At high power levels the measured spectrum extends up to 1750 nm,
which is the upper detection limit of our optical spectrum analyzer (OSA). The generation of
such a wide wavelength range, covering two octaves from 523 to 1750 nm, using a large-core
telecommunication-grade multimode fiber distinguishes our results from those carried out in
small-core or highly customized optical fibers.

Multimode optical fibers are easy to handle and are also easy to align to external sources;
however, their large core diameter is perceived as undesirable for nonlinear applications. De-
spite a lower effective nonlinearity associated with a larger core of conventional multimode
fibers, the multimode nature of these fibers can play an important role in some nonlinear ap-
plications. In particular, the presence of multiple propagating modes with different dispersive
properties results in expanded phase-matching opportunities for the generation of four-wave
mixing (FWM) signals in optical fibers [5–7]. The GIMF used in our experiments has two
desirable properties that make it particularly suitable for SRS generation. First, since the ef-
fective modal area of each mode in the GIMF scales only as square root of the core area, the
effective nonlinearity of some propagating modes is comparable with conventional single-mode
fibers [8]. Second, a relatively high GeO2 content in the core of the standard telecommunication
GIMF used in our experiments results in a higher peak Raman gain coefficient compared with
silica-core fibers [9].

2. Generation of new wavelengths and spectral measurements

The pump used in our experiment is a frequency-doubled, Q-switched, Nd:YLF laser operating
at 523 nm wavelength, and its 8-ns duration pulses are coupled to the input tip of the fiber
using a microscope objective. The laser beam is not diffraction-limited, and many modes in
the fiber are excited simultaneously. The GIMF is a 1-km long standard, 50/125-μm, bare fiber
(Corning ClearCurve OM2). The output spectrum is measured using a CCS200 spectrometer
(from Thorlabs) operating in the range of 200–1000 nm and a MS9740A OSA (from Anritsu)
covering the 600–1750 nm wavelength range. We measured the energy of input pulses required
for reaching the Raman threshold immediately after coupling into the fiber (less then 1-meter
of propagation inside the GIMF) to be 20.9 μJ; we estimate the peak power to be about 2.5 kW.
The pulse energy decreased to about 0.515 μJ after 1-km of propagation, which is consistent
with the expected attenuation of about 16 dB/km at the pump wavelength.

The sequential generation of cascaded Raman peaks at four different pump power levels is
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Fig. 1. Sequential generation of Raman peaks at four pump power levels as measured by the
spectrometer. The vertical axis is in arbitrary “linear” unit of power. Labels are omitted on
the horizontal wavelength axis for clarity. The leftmost peak in each subplot is at 523 nm.
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Fig. 2. (left) Cascaded Raman peaks measured with the spectrometer. (right) Spectrum
measured by the OSA when pump power is increased to just below the burning threshold
of fiber’s tip; the spectral dip at around 1300 nm and the broad peak beyond 1400 nm are
two notable features in this infrared range.

shown in four separate subplots in Fig. 1 using spectrometer measurements. The pump power
just exceeds the Raman threshold in subplot (a) showing the pump at 523 nm and the first
low-power Stokes line. As the pump power is increased, the first Stokes line extracts power
from the pump until it becomes strong enough to seed the generation of next Stokes line. This
process continues and more and more Raman peaks are generated with increasing pump power,
as shown in subplots (b), (c), and (d) in Fig. 1. The 20 cascaded peaks shown in Fig. 2 (left)
extend from 523 nm to just above 1000 nm in wavelength. The estimated input peak power of
our pulses is 22 kW for this figure.

As the pump power is further increased, even more cascaded Raman peaks appear beyond the
1000 nm wavelength range of our spectrometer. Figure 2 (right) shows the spectrum measured
with the Anritsu OSA in the range of 900–1750 nm at the maximum pump power level (just
below the burning threshold of fiber’s input tip). The spectral dip at around 1300 nm and the
broad peak beyond 1400 nm are two notable features in this infrared range. In our opinion, the
broad peak centered at 1600 nm results from the onset of modulation instability in the presence
of anomalous dispersion. The resulting short pulses can undergo soliton fission and experience
Raman-induced spectral shifts as well as soliton-collision-based spectral broadening, resulting
in a broad supercontinuum like feature [10]. We stress that the two plots in Fig. 2 should not be
compared directly since they correspond to different power levels and employ different vertical
scales.

The spectral dip centered at the 1320-nm wavelength is surprising at first sight. We think
its appearance is related to a reduction in the SRS gain occurring near the zero-dispersion-
wavelength of the fiber, where the SRS gain is suppressed due to a near-perfect phase-matching
of the FWM process [10]. The dip at 1320 nm can be seen more clearly in Fig. 3, where we
plot the data in Fig. 2 (right) on a logarithmic power scale.
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Fig. 3. Same as Fig. 2 (right) but data plotted using a logarithmic vertical scale. The input
pump power is just below the burning threshold of fiber’s tip.
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Fig. 4. Raman comb measured with the spectrometer and plotted using frequency shift on
the horizontal axis. Notice the presence of FWM peaks on the anti-Stokes side.

We note that the presence of efficient FWM phase-matching opportunities in the GIMF im-
pacts the generation of the cascaded Raman peaks [8]. Figure 4 shows the spectrometer data
in the frequency domain, by plotting on the horizontal axis the frequency shift of the Raman
comb relative to the pump frequency, and power on a logarithmic scale on the vertical axis.
Equal spacing of various peaks on the Stokes side is expected for a cascaded Raman process.
However, the presence of FWM frequencies on the anti-Stokes side of the pump is the most
notable feature in this figure. The phase-matched frequency counterparts of these FWM idlers
on the Stokes side can affect the location and amplitude of the cascaded Raman peaks. We
observed that the strength of the FWM signal depended on launch conditions, and FWM was
absent (or highly suppressed) in some of our measurements.

In order to explore this effect, we slightly offset the input pump beam so that beam center is
not aligned with the center of the fiber core. The pump now excites the GIMF modes with dif-
ferent power ratios, resulting in efficient FWM in a different set of phase-matched wavelengths.
The result is a shift in the position of the spectral combs. The red and green spectra in Fig. 5 are
measured before and after offsetting the pump laser, respectively. The shift seems to be seeded
around the third cascaded Raman peak, separated by about 50 THz from the pump frequency,
which is also consistent with the location of a FWM peak in Fig. 4. Similar observations of the
effect of the FWM processes on shifting the SRS spectrum have been reported by Sharma et
al. [11]; they have shown that the cascaded Raman peaks can shift depending on which modes
are excited by the pump laser.

3. Spatial beam profiles and beam cleanup in SRS generation

We also measured the transverse intensity profile of the output beam by a CCD camera using
several bandpass color filters with a bandwidth of about 10 nm (full width at half-maximum).
The results are shown in Fig. 6. The leftmost profile is measured without a color filter, and
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Fig. 5. SRS spectra measured before (red solid line) and after (dashed green line) a slight
offset of the pump beam from the fiber center. Shift of Raman peaks is caused by different
FWM conditions caused by excitation of different fiber modes.

Fig. 6. Measured spatial profiles using a CCD-based beam profiler. The leftmost image is
measured with no filters. The other 4 images are obtained using color filters centered at
610 nm (second from left), 700 nm (third from left), 770 nm (fourth from left), and 890 nm
(rightmost).

the interference of multiple modes can be clearly observed as a speckle pattern. When a color
filter centered at 610 nm is placed in front of the beam (second from left), we observe a narrow
round spot that appears to correspond to the spatial profile of the fundamental LG00 mode of
our GIMF (LG stands for Laguerre-Gauss). A donut-shape spot (third from left) is observed
when a color filter centered at 700 nm is placed in front of the beam; it may correspond to the
LG01 mode of our fiber.

Spatial beam profiles corresponding to higher-order fiber modes were also seen in our ex-
periment. As two examples, the two rightmost images of Fig. 6 show profiles corresponding
to the LG10 and LG20 modes. They were obtained by using optical filters with a 10-nm pass-
band centered at 770 nm and 890 nm wavelengths, respectively. The most notable feature we
want to stress is that a GIMF can be used as a device that not only shifts the pump wavelength
toward the red side through SRS but also performs the beam cleanup owing to the fact that
different-order Raman peaks generally propagate in different modes of the fiber. An explana-
tion of SRS-induced beam cleanup in graded-index multimode optical fibers can be found in
Ref. [12]. Chiang reported similar results for higher order SRS combs in a 30-m-long fiber [13].
However, only LP01 mode (corresponding to LG00 mode here) was observed for a 1-km-long
fiber. In our experiments, we observed higher-order modes even for a 1-km-long fiber, and beam
cleanup was not at the same level reported in Ref. [13].

4. Conclusion

We have used a standard, telecommunication-grade, graded-index multimode fiber for SRS
generation by pumping it at 523 nm with 8-ns pulses. We observe multiple cascaded Raman
peaks extending up to 1300 nm. Beyond that wavelength, the nature of dispersion changes
from normal to anomalous since our fiber has its zero-dispersion wavelength near 1320 nm. At



higher pump powers, in addition to the multiple cascaded Raman peaks, we observe a single
broadband spectral peak, extending from 1350 to 1750 nm. Its origin appears to be related to
the formation of solitons through modulation instability and their subsequent fission induced
by higher-order dispersion and intrapulse raman scattering. Such features have been observed
in the past for single-mode fibers. Our experiments show that a supercontinuum can also form
in a multimode fiber. The multimode nature of the fiber can also be useful from a practical
standpoint. For example, we observed that different spectral peaks have spatial patterns that
correspond to different fiber modes. This feature can be useful for beam cleanup. Future efforts
will focus on extending the spectrum to the infrared region and on stabilizing the frequency and
power of individual comb lines for practical applications.
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A nonlinear optical device, referred to as a saturable
absorber (SA), is required to start the lasing process in
passively mode-locked lasers. The power-dependent
transmission of SAs creates an intensity contrast in the
laser cavity, which leads to the suppression of random
fluctuations and the generation of optical pulse trains.
Common fiber-integrable SAs have deficiencies such
as long-term reliability, thermal issues, and sensitivity
to environmental perturbations, which limit their useful-
ness for mode-locked fiber laser applications. Also,
common SAs have become a limiting factor in boosting
the pulse energy and peak power of mode-locked lasers
to higher values. Hence, there is a strong need to develop
robust alternative mode-locking techniques.
Recently, nonlinear mode coupling in waveguide ar-

rays and multicore fibers [1–5] and also nonlinear multi-
modal interference in graded-index multimode fibers [6]
have been introduced as alternative techniques that
address most of the limitations faced by common SAs.
In Ref. [7], we compared the nonlinear switching behav-
ior in multicore versus multimode fibers and showed that
a much higher switching power is required in the latter
case, due to the large difference in the propagation
constant of the modes. This feature makes multimode
fiber couplers potential mode-locking devices for future
high-peak-power lasers. For lower peak powers, as is
the case in most present-day mode-locked fiber lasers,
it is preferred to use multicore couplers.
Our recent study on multicore fiber array couplers

showed that going from a two-core fiber geometry to a
higher number of cores does not improve the nonlinear
switching performance of the device considerably, if any
at all [8]. Hence, according to our studies, a two-core fi-
ber coupler with optimized parameters is the optimum
solution to achieve an all-fiber mode-locking device.
In this Letter, we propose a novel all-fiber nonlinear

switching and mode-locking device in the form of a tri-
ple-clad fiber, as shown in Fig. 1, where the refractive
index of the core and that of the second cladding layer
are the same. We will refer to this structure as a two-
concentric-core (TCC) fiber, which is composed of a

central circular core and a surrounding ring core
[9,10]. The main reason for choosing this geometry is
its simple fabrication process. Given that conventional
fibers are fabricated radially, maintaining the sensitive
specifications of this fiber during the drawing process
is easier than with nonconcentric conventional two-core
fibers [11]. Another related reason is that aligning the
central core of this fiber with the single-mode fibers
(SMFs) in the laser cavity is much easier and more robust
compared with conventional two-core geometries.

In this Letter, the parameters of this two-core-fiber
mode-locking device are designed, and the nonlinear
propagation of a pulse in this coupler is analyzed numeri-
cally. To lower the required switching power, it would be
preferred to build the coupler from a material with a
higher nonlinearity compared to silica [12]. Chalcogenide
glass is a suitable candidate, because it has a nonlinear
coefficient up to 1000 times larger than silica [13].

The all-fiber mode-locking device is shown in Fig. 2,
where the beam is injected into the central core of the

Fig. 1. Cross-sectional view and the refractive index profile of
the fiber.

August 15, 2014 / Vol. 39, No. 16 / OPTICS LETTERS 4675

0146-9592/14/164675-04$15.00/0 © 2014 Optical Society of America

http://dx.doi.org/10.1364/OL.39.004675


TCC fiber coupler using an input SMF and is collected at
the output from another SMF. The injected beam from
the input SMF is in the form of an azimuthal symmetric
nearly Gaussian beam, so by centrally aligning the core of
the input SMF with the central core of the TCC coupler,
only zero-angular-momentum modes will be excited in
the coupler [14]. For low-input optical powers launched
into the nonlinear coupler, optical power is periodically
exchanged among the two cores because of their modal
overlap. To achieve maximum linear coupling, the
parameters of the fiber coupler should be designed such
that the two cores are phase matched [15]. For high-input
optical powers, nonlinear effects arise and alter the re-
fractive index of each waveguide. This will detune the
effective propagation constants of the modes and will
consequently reduce the power exchange efficiency be-
tween the cores, which means that light will be mainly
preserved in the launch core [16]. Hence, if an optical
pulse is transmitted through a fiber coupler with a length
equal to the coupler’s half-beat length, its low-intensity
tails will be linearly coupled to the adjacent core, while
its high-intensity center peak will remain in the launch
core [17]. If only the light in the launch core is collected
at the output, the required power-dependent transmis-
sion for mode-locking is obtained [1,2].
The fiber profile is designed such that it supports only

two zero-angular-momentum guided modes, referred to
as the first- and second-order guided modes. The electric
field in the TCC can be expressed as the summation of
these guided modes as

E�x; y; z; t� �
X
μ�1;2

Aμ�z; t�Fμ�x; y�ei�ω0t−β0;μz�; (1)

where Aμ�z; t� is the slowly varying envelope of the
electric field of the μth mode with the normalized spatial
distribution Fμ�x; y� and propagation constant β0;μ. The
generalized nonlinear Schrödinger equation (GNLSE)
describing the longitudinal evolution of the pulse in this
fiber coupler can be written as [18,19]

∂Aμ

∂z
� −

α

2
Aμ � iδβ0;μAμ − δβ1;μ

∂Aμ

∂t
− i

β2;μ
2

∂2Aμ

∂t2

� i
�
n2ω0

c

� X
ν;κ;ρ�1;2

f μνκρAνAκA�
ρ ; μ � 1; 2: (2)

The indices can take the value of 1 or 2, corresponding
to first- and second-order modes. α is the fiber attenua-
tion, β1;μ is the group delay per unit length, and β2;μ is
the group velocity dispersion (GVD) parameter of the
μth mode. We define δβ0;1 � −δβ0;2 � β0;1 − β0;ref and
δβ1;1 � −δβ1;2 � β1;1 − β1;ref , where βi;ref � �βi;1 � βi;2�∕2
for i � 0; 1. n2 is the nonlinear index coefficient, and

ω0 is the carrier frequency. The nonlinear coupling coef-
ficients are given by

f μνκρ �
ZZ

dxdyF�
μFνF κF�

ρ ; (3)

where the mutually orthogonal spatial profiles are as-
sumed to be normalized according to

RR
F2
1dxdy �RR

F2
2dxdy � 1. The spatial mode profiles of the guided

modes of the TCC coupler, F1 and F2, and also that of
the center core, Fc, can be found using the finite element
method (FEM) [20], where Fc is calculated for the central
core in the absence of the outer ring. The beam is
launched into and collected from the center core of the
TCC fiber coupler. The transmittance is defined as the
energy at the output of the center core divided by the to-
tal energy injected into the coupler, given by

τ �
R�∞
−∞ jAc�Lc; t�j2dtR�∞

−∞ �jA1�0; t�j2 � jA2�0; t�j2�dt
; (4)

where Lc is the half-beat length, Pout � jAcj2 is the col-
lected output power from the coupler, and Ac is the field
amplitude of the center core, defined as

Ac�z; t� � A1�z; t�
ZZ

F�
c F1dxdy� A2�z; t�

ZZ
F�
c F2dxdy:

(5)

In the following simulations, we have assumed that the
fiber material is As2Se3 chalcogenide glass. The operat-
ing wavelength is considered λ0 � 1550 nm. The refrac-
tive index of both cores is nco � 2.834, while that of the
cladding is ncl � 2.831. The central core has a radius of
r1 � 4.1 μm, and the inner radius of the ring is
r2 � 8.2 μm, while its width is 3.94 μm. The nonlinear in-
dex is n2 � 1.1 × 10−17 m2∕W, and the fiber propagation
loss is α � 1 dB∕m [13,21]. The dispersion of the funda-
mental mode is equal to D � −826 ps∕nm∕km, while that
of the second-order mode is D � −819 ps∕nm∕km. These
values include both the material and the waveguide
dispersion. The material dispersion is calculated using
the Sellmeier equation [22] and then incorporated in
the FEM to evaluate the total chromatic dispersion.
The fiber exhibits normal dispersion at 1550 nm. It should
be noted that fibers with such a layered refractive index
profile are frequently used for dispersion compensation
due to their large negative dispersion values [23].

With these parameters, each individual core supports
only 1 zero-angular-momentum mode. It should be
pointed out that in order to minimize the splicing losses
between the silica SMF-28 fibers of the cavity and the
TCC, the dimensions and numerical aperture of the cen-
tral core are chosen to be similar to those of the cavity
SMFs. The Fresnel reflection loss, due to the refractive
index difference between silica and chalcogenide glass,
is around 0.45 dB on each end of the TCC fiber, which
can be potentially suppressed by using antireflection
coating [24]. Whether the facet reflection can be toler-
ated or would require impedance matching depends on
the configuration of the mode-locked fiber laser cavity,
and is beyond the scope of this analysis. The main

Fig. 2. All-fiber nonlinear switching device composed of a
TCC coupler placed in between two SMFs.
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advantage of this to silica-based structures, as will be
shown later, is its substantially lower switching power.
In what follows, we will refer to the power after reflec-
tion and coupling losses at the input end as the input
power, and the power before reflection and coupling
losses at the output end as the output power. The length
of the TCC coupler is 1.74 mm, given by Lc � π∕�2C�,
where C � δβ0;1 is the linear coupling coefficient among
the two propagating modes [15].
We assume that a hyperbolic secant optical pulse in the

form of E�0; t� � P1∕2
0 sech�t∕t0� is launched into the non-

linear coupler through the input SMF, where P0 is the
peak power, and the full width at half-maximum (FWHM)
pulse duration is T0 ≈ 1.763t0. The nearly Gaussian spa-
tial mode profile of the input beam with a temporal
power profile of Pc�t� excites the guided modes of the
TCC fiber with power profiles P1�t� and P2�t� with nor-
malized peak powers p1 and p2, respectively, where it can
be shown that p1 � p2 ≈ 1. The normalized peak excita-
tion power of each guided mode at the TCC input facet is
calculated using the overlap integral of the input beam
and that particular mode, where in this case it is found
that p1 � 62.6% and p2 � 37.2%.
We have applied a split-step Fourier method [25] to

solve Eq. (2) and analyze the propagation of the pulse
inside the nonlinear coupler. For low powers, the TCC
fiber operates similarly to a linear directional coupler
at half-beat length, and most of the pulse energy is trans-
ferred to the ring core. For intense pulses, the central
portion of the pulse remains in the central waveguide,
while the low-intensity wings of the pulse are transferred
to the ring core. In Fig. 3, the normalized input pulse
power launched into the central core and that of the out-
put pulse are shown for a FWHM pulse duration of
T0 � 1 ns. The reason for choosing a nanosecond pulse
width is that in most modern lasers the SA is a critical
device only for allowing the pulse to build up from the
noise and start the lasing process, while a narrow spec-
tral filter is responsible for the pulse shaping [26]. Hence,
nanosecond pulses which are pertinent to the starting
process are considered here.
The effect of the pulse duration on the switching dy-

namics can be seen in Fig. 4, where we have calculated
the relative power transmission as a function of the input

peak power for various input pulse durations. The rela-
tive power transmission for pulse widths larger than 1 ps
are the same as that of T0 � 1 ps. It can be observed that
a higher input power is required to switch the output
from τmin to τmax as the duration of the pulse gets shorter.
Also, the maximum achievable transmission decreases as
the pulse duration is shortened. The reason is that the
dispersion effects become more significant for shorter
pulse widths, and the resultant pulse broadening pre-
vents complete power transfer. It should be noted that,
as the input peak power is increased, nonlinear terms be-
come larger, and because of the large amount of the
induced frequency chirp imposed on the pulse due to
self-phase modulation, even weak dispersive effects lead
to significant pulse shaping. Hence, for high input
powers, the output pulse would become rectangularly
shaped with relatively sharp leading and trailing edges
[25]. This limits the upper level of the input peak power
to these couplers. The damage threshold of chalcogenide
glasses should also be considered while designing these
couplers. The optical damage mechanisms for these fi-
bers are not well known; however, the obtained switch-
ing power in our design is not far from the damage
threshold of another chalcogenide glass composition,
As2S3 [27,28].

The switching power is considered to be the power at
which the output from the central core contains 50% of
the input energy injected into the fiber. While this power
is slightly above 3 kW for the chalcogenide fiber coupler
considered here, it is of the order of MWs for silica fibers
with the same structure [29]. Also, one can reduce the
switching power by increasing the distance between
the two cores and reducing the coupling between them.
For example, increasing the gap between the two cores
to 9 μm results in a switching power of 800 W. However,
the length of the coupler is longer in this case, and the
strong dispersive effects overcome the nonlinear pulse
shortening mechanism if the pulse is too short.

During the fabrication process, random core diameter
fluctuations will be inevitable; the effect of these fabrica-
tion imperfections on the performance of the coupler is
studied in Ref. [29], and it is shown that these imperfec-
tions are tolerable as long as the changes they impose on
the propagation constant of the modes are smaller than
the coupling between the two cores. For the parameters

Fig. 3. Normalized input and output pulse shapes for a pulse
width of T0 � 1.763t0 � 1 ns. The input peak power is 5 kW.

Fig. 4. Relative power transmission is plotted as a function of
the input peak power for different pulse widths.
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considered here, typical �2% core size variations are
tolerable.
In summary, we have proposed a novel concentric-

core fiber structure made of chalcogenide glass to be
used as an all-fiber mode-locking element. The nonlinear
switching behavior of this coupler is analyzed by carrying
out a normal mode analysis of the waveguide. The chal-
cogenide glass has a large chromatic dispersion. In order
to avoid substantial pulse broadening due to dispersion,
the length of the coupler (half-beat length) should be re-
duced as much as possible. This, in turn, can be achieved
by reducing the separation between the central core and
the ring core and increasing the coupling between them.
On the other hand, increasing the coupling between the
cores increases the switching power, which may not be
desirable. Therefore, the optimal design is a compromise
between the pulse broadening and switching power. The
pulse broadening and switching power can also be modi-
fied by changing the geometrical parameters and glass
compositions.

The authors acknowledge support from the Air Force
Office of Scientific Research under Grant No. FA9550-12-
1-0329 and are indebted to the anonymous reviewers for
their detailed and helpful comments.
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We explore the practical challenges that should be addressed when designing a multicore fiber coupler for non-
linear switching or mode-locking applications. The inevitable geometric imperfections formed in these fiber cou-
plers during the fabrication process affect the performance characteristics of the nonlinear switching device.
Fabrication uncertainties are tolerable as long as the changes they impose on the propagation constant of the
modes are smaller than the linear coupling between the cores. It is possible to reduce the effect of the propagation
constant variations by bringing the cores closer to each other, thereby increasing the coupling. However, higher
coupling translates into a higher switching power, which may not be desirable in some practical situations. There-
fore, fabrication errors limit the minimum achievable switching power in nonlinear couplers. © 2014 Optical
Society of America
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1. INTRODUCTION
Nonlinear mode coupling in multicore fiber couplers has re-
cently attracted considerable attention owing to their applica-
tions in nonlinear switching, and in particular, in all-optical
mode locking of fiber lasers [1–6]. A multicore fiber operates
as a linear directional coupler at low optical powers, where
power is exchanged periodically among neighboring wave-
guides. Linear coupling is most efficient when the cores are
phase matched, or in other words, their propagating modes
have identical propagation constants [7]. At higher optical
powers, the nonlinear refractive indices of the cores are
altered due to nonlinear effects. Consequently, the effective
propagation constants of the participating modes are detuned,
which reduces the power exchange efficiency between the
neighboring cores and as a result, the majority of light remains
in the launch core [8]. Therefore, the different behaviors that a
multicore fiber shows based on the intensity of the input
optical power make it a suitable device for nonlinear switch-
ing and mode-locking applications.

Nonlinear switching and mode-locking schemes, which rely
on nonlinear coupling among the propagating modes, deal
with practical constraints. For instance, the need for a high
nonlinear index of refraction limits the application of long-
period fiber gratings in nonlinear switching [9]. In dual-core
fiber ring lasers, preserving strong resonant coupling between
the core modes over the required cavity lengths is difficult
[10]; similarly, maintaining the coupling among the modes
of a graded-index multimode fiber over long lengths is a chal-
lenge [11]. In multicore fiber couplers, uncertainties such as
fluctuations in the core radii happen both in the preform fab-
rication and the drawing of the fiber. These errors affect the
core-to-core couplings. In some applications, such as image
transport, errors and variations are incorporated intentionally

in the cores to enhance the image contrast, because efficient
core-to-core coupling can be detrimental to the image trans-
port quality [12,13]. By contrast, applications such as nonlin-
ear switching require accurate core-to-core coupling, so,
fabrication errors degrade the performance of multicore
nonlinear fiber couplers.

In this paper, to get a realistic understanding of the perfor-
mance of multicore fiber couplers in the presence of fabrica-
tion uncertainties, the limitations that these errors impose on
the performance of a nonlinear switch are investigated at
three levels: (1) effects on the propagation constant of the
propagating modes β, relative to the core-to-core coupling;
(2) effects on the first derivative of β, otherwise known as
the group velocity; and (3) effects on the second derivative
of β, known as the group velocity dispersion (GVD). These
issues will be addressed in the following sections of the paper.

2. UNCERTAINTIES IN FIBER
FABRICATION
In the linear regime, light propagation in each core of a two-
core fiber coupler is generally described using the coupled
mode theory, and can be written as

i∂z
�
Aa

Ab

�
�

�
β0 Cba

Cab β0

��
Aa

Ab

�
� BA; (1)

where Aa and Ab are the amplitudes of the modes in each indi-
vidual waveguide. It is assumed that the propagating modes in
both waveguides have identical propagation constants, β0,
and coupling coefficients, Cab � Cba. Instead of considering
the modes of individual waveguides and their couplings,
an alternative approach is to study the propagation of the
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fundamental modes of the complete index profile of the cou-
pler, known as the symmetric and antisymmetric supermodes.
The spatial mode profile of the supermodes, Fμ�x; y�, can be
approximated as a superposition of the guided modes of each
individual core as [14,15]

Fμ�x; y� ≈
X
μ�1;2

kμ ~Fμ�x; y�; (2)

where ~Fμ�x; y� is the mode profile of the fundamental guided
mode propagating in each core and kμ is the weight factor of
the μth core. The eigenvectors and eigenvalues of B provide
the weight factors and propagation constants of the superm-
odes, respectively. The eigenvectors of B, which are �11� and
�−11 �, lead to equal excitation of both supermodes at the fiber
input. However, if due to fabrication uncertainties the propa-
gation constant of one waveguide changes slightly to β0 � δβ,
the eigenvectors of B change as well, and consequently, the
input beam is coupled to the symmetric and antisymmetric
supermodes unequally. This reduces the power exchange
efficiency between the two cores and degrades the nonlinear
switching performance of the coupler by lowering the modu-
lation depth of the mode-locking device, as also seen in
Ref. [15]. In order to avoid this and observe perfect linear
switching for low powers, the fluctuations in β0 should be
much smaller than the coupling between the propagating
modes. Hence, we can define δβ ≈ Cab as the cutoff for the
acceptable range of fabrication errors; in this case, around
70% of the power is in one supermode, whereas the other
one carries only 30%.

To present the aforementioned arguments, we explore the
nonlinear switching behavior of a two-concentric-core (TCC)
fiber geometry. This fiber coupler has TCCs, consisting of a
central circular core and a surrounding ring core, as shown
in Fig. 1. The refractive index profile of the fiber considered
can also be seen in this figure. Owing to its cylindrical

symmetric configuration, this fiber can be fabricated using
the same techniques used for conventional fibers, which is
more straightforward compared with nonconcentric two-core
fibers. This simple fabrication process is the main reason for
choosing this specific geometry. One other reason is that the
central core of this fiber can be fabricated with the same
material and properties as the single-mode fibers (SMFs) of
the laser cavity, easing the alignment of the coupler with
the cavity fibers and reducing splicing losses [16].

The fiber profile is designed such that it supports only two
zero-angular momentum guided modes, referred to as the
first- and second-order guided supermodes. The electric field
in the TCC can be expressed as the summation of these guided
modes as

E�x; y; z; t� �
X
μ�1;2

Aμ�z; t�Fμ�x; y�ei�ω0t−β0;μz�; (3)

where Aμ�z; t� is the slowly varying envelope of the electric
field of the μth mode with the normalized spatial distribution
Fμ�x; y� and propagation constant β0;μ. The generalized non-
linear Schrödinger equation describing the longitudinal evolu-
tion of a pulse in this fiber coupler can be written as [17,18]

∂Aμ

∂z
� iδβ�0�μ Aμ − δβ�1�μ

∂Aμ

∂t
− i

β�2�μ

2

∂2Aμ

∂t2

� i
�
n2ω0

c

� X
ν;κ;ρ�1;2

f μνκρAνAκA�
ρ ; μ � 1; 2: (4)

The indices can take the value of 1 or 2, corresponding to first-
or second-order supermodes, respectively. β�1�μ denotes the
group velocity and β�2�μ is the GVD parameter of the μth mode.
We define δβ�0�1 � −δβ�0�2 � β�0�1 − β�0�ref and δβ�1�1 � −δβ�1�2 �
β�1�1 − β�1�ref , where β�i�ref � �β�i�1 � β�i�2 �∕2 for i � 0, 1. The nonlin-
ear index coefficient of the fiber is defined by n2 and ω0 is the
carrier frequency. The nonlinear coupling coefficients f μνκρ
are given by

f μνκρ �
ZZ

dxdyF�
μFνF κF�

ρ ; (5)

where the mutually orthogonal spatial profiles are assumed to
be normalized according to

RR
F2
1dxdy � RR

F2
2dxdy � 1.

In the two different TCC fiber couplers studied here, in
order to have maximum linear coupling, the inner and outer
radii of the ring core are designed such that the propagation
constant of its fundamental mode matches that of the central
core. The radius of the central core is altered from its original
value to the cutoff value, where one supermode carries 70% of
the input power, and that value is defined as the maximum
acceptable fabrication errors. The core size of the central core
is the only geometrical parameter altered in this paper, be-
cause it has been shown that the performance of this fiber
is more sensitive to variations of the central core radius com-
pared with that of the ring core [19]. The radius of the central
core and the refractive index of both cores in coupler A
are r1 � 2.1 μm and n1 � 1.465, respectively, whereas the
parameters in coupler B are r1 � 4.1 μm and n1 � 1.451, re-
spectively. The operating wavelength is λ0 � 1550 nm and the
cladding refractive index for both couplers is assumed to be
1.444 (corresponding to pure silica). Figure 2 shows how the

Fig. 1. Cross-sectional view and refractive index profile of the fiber
structure.

E. Nazemosadat and A. Mafi Vol. 31, No. 8 / August 2014 / J. Opt. Soc. Am. B 1875



tolerance to fabrication errors in these two couplers varies as
a function of the separation between the two cores, where the
separation is defined as the gap between the two cores (r2 − r1
in Fig. 1). As the separation between the ring core and the
central core increases, the overlap of the fields reduces, which
leads to a smaller coupling and a larger beat length. According
to the results, the tolerance to fabrication errors reduces as
the ring core is placed farther away from the central core.
Hence, it is preferred to design the coupler such that the sep-
aration between the two cores is small, at the price of a higher
switching power. The switching power is defined as the input
power at which the output power from the central and ring
core are equal. Typical fabrication errors in core radius are
around�1%; thus according to Fig. 2, the maximum allowable
separation between the two cores in coupler A is around 6 μm,
whereas in coupler B, separations up to 10 μm are acceptable.

3. NONLINEAR SWITCHING BEHAVIOR
The TCC fiber can be used as an all-fiber mode-locking device,
referred to as a saturable absorber, as shown in Fig. 3, where
the beam is injected into the central core of the TCC coupler
using an input SMF and is collected at the output from the
same core, using another SMF. To minimize the splicing loss
between the cavity and the TCC, the central core is considered
identical to the cavity SMFs. Given that the injected beam
from the input SMF is in the form of an azimuthal symmetric
Gaussian beam, by aligning the central core of the TCC with
the input SMF core, only the zero-angular momentum modes
of the TCC fiber can be excited [20], which is the case con-
sidered in this paper.

When the noise of the gain medium in the laser cavity is
transmitted through the TCC fiber coupler with length equal
to the coupler’s half-beat-length Lhb, low-intensity noise is
coupled linearly to the ring core and experiences a high loss,

whereas high-intensity noise remains in the launch core, re-
sulting in a high-intensity contrast. This leads to the formation
of optical pulses. The power-dependent transmission feature
of the coupler can be used for mode-locking fiber lasers [1,3].
In modern lasers, the saturable absorber is a critical device
only for allowing the pulse to build up from noise and start
the lasing process, while pulse shaping is achieved through
using a narrow spectral filter [21,22]. Therefore, it would be
reasonable to study the performance of the device for nano-
second pulses, which are pertinent to the starting process.

A hyperbolic secant optical pulse with a pulse width of t0 is
launched into the nonlinear coupler through the input SMF.
The nearly Gaussian spatial mode profile of the input beam
excites the supermodes of the coupler. The excitation power
related to each supermode can be found using the overlap in-
tegral of that particular supermode with the input beam. The
pulse propagation inside the nonlinear coupler was analyzed
by solving Eq. (4) using the split-step Fourier method. The col-
lected output power from the coupler is Pout � jAcj2, where Ac

is the field amplitude of the central core, obtained by

Ac�z; t� � A1�z; t�
ZZ

F�
c F1dxdy� A2�z; t�

ZZ
F�
c F2dxdy; (6)

where F1, F2, and Fc are the spatial mode profiles of the two
supermodes of the TCC coupler and that of the propagating
mode of the central core, respectively. The finite-element
method was used to calculate these profiles [23]. Fc is calcu-
lated for the coupler in the absence of the outer ring. Trans-
mittance is defined as the energy at the output of the central
core divided by the total energy injected into the coupler,
given by

τ �
R�∞
−∞ jAc�Lhb; t�j2dtR�∞

−∞ �jA1�0; t�j2 � jA2�0; t�j2�dt
: (7)

In Fig. 4, the normalized input pulse and output pulses cor-
responding to different peak input pulse intensities are dis-
played for coupler A. The fiber is assumed to be made of
silica and its parameters, with reference to Fig. 1, are r1 � 2.1,
r2 � 8, and r3 � 9.95 μm. These parameters are chosen such
that the coupler’s tolerance to fabrication errors is around
�1%, as shown in Fig. 2. It can be observed that as the input
power increases, a larger portion of the pulse energy remains
in the central waveguide. For the parameters considered here,
a switching power of the order of 0.5 MW is required. Tran-
sition from low transmission to high transmission occurs
when the nonlinear interaction of each mode with itself is
comparable to the linear core-to-core coupling; therefore, a
fair estimate for obtaining the power threshold for nonlinear
switching in an ideal coupler without any fabrication errors is
�n2ω0∕c�f 1111P0 ≈ C, where C � δβ0;1 is the linear coupling
coefficient among the two propagating modes. Hence, a lower
switching power requires a coupler with a large nonlinear co-
efficient and a small linear coupling coefficient. In Fig. 5, it can
be seen how the linear coupling coefficient, C, varies as a
function of the separation between the cores of couplers A
and B. To observe better the difference between the C param-
eter of these two couplers, the figure is plotted on logarithmic
scale. As can be observed in the figure, for small separations,
the coupling coefficient in coupler A is larger than that in

Fig. 2. Maximum acceptable fabrication errors in central core radius
as a function of the separation between the cores.

Fig. 3. All-fiber nonlinear switching device composed of a TCC
coupler placed between two SMFs.
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coupler B, whereas vice versa occurs for larger separations.
Considering a fixed separation, the effective area of coupler A
is less than that of coupler B, resulting in a larger nonlinear
coefficient. For the specific couplers considered here, the
nonlinear coefficient of coupler A is approximately 3 times
that of coupler B for all separations. The combination of linear
coupling and nonlinearity leads to a lower switching power in
the coupler with the smaller central core radius, for all sepa-
ration values, as can be seen in Fig. 6. To reduce the switching
power, one can increase the separation between the two cores
and reduce the coupling. However, as mentioned in the pre-
vious section, such a coupler with a large separation between
the two cores requires high fabrication precision in order to
operate properly in the linear regime.

In Fig. 7, the sensitivity of the coupler transmission has
been studied against �1% variations in the radius of the cen-
tral core. As observed, the modulation depth of the nonlinear
switch is reduced in both cases. When there are no variations
in the central core, both supermodes are excited equally,
whereas in δr1 � 1%, most of the power is carried by the
first-order supermode and vice versa for the δr1 � −1% case.
This unequal excitation of the modes is the reason behind the
lower quality of the transmission curves of these two cases
compared with the error-free case. δr1 � 1% variations have

the advantage of shifting the transmission curve to lower
powers, whereas, δr1 � −1% variations increase the power
threshold of the device, which is not desirable. Larger
amounts of error reduce the modulation depth further; thus,
there is a compromise between the fabrication error and the
modulation depth of the device. In cases where a lower modu-
lation depth is sufficient to start the lasing process of the laser,
one can deliberately increase the central core radius slightly
from the designed value, and hence, reduce the switching
power required.

4. GROUP VELOCITY
The two supermodes have different group velocities; thus, the
pulses carried by these two modes walk-off due to traveling at
different speeds and after a certain propagation distance,
known as the walk-off length, given by Lw � t0∕�β1;1 − β1;2�,
the two pulses will not have any overlap and hence, will
not interact. Given that the length of the coupler is chosen
based on its half-beat-length, Lhb, to avoid the walk-off effect,
while designing a fiber coupler, one should take note that the
minimum pulse width that can propagate through the coupler
without experiencing walk-off is t0 � Lhb × �β1;1 − β1;2�. For
the coupler length considered in this paper, the minimum
acceptable pulse width that will not experience walk-off
is t0 ≈ 14.7 fs.

Fig. 4. Normalized pulse power at the output of the central core for
different input peak powers (units are MW) when pulse width is
t0 � 1 ns. A similar behavior is observed for picosecond pulses,
but we considered nanosecond pulses because they are more relevant
for the start of a lasing process.

Fig. 5. Coupling among the two cores as a function of the separation
between them on logarithmic scale.

Fig. 6. Approximate power required for nonlinear switching in cou-
plers A and B as a function of the separation between the cores.

Fig. 7. Relative power transmission of coupler A is plotted as a func-
tion of input power with variations in the central core radius.
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5. GROUP VELOCITY DISPERSION
When the two cores are coupled strongly and the separation
between them is not large, the GVD and also dispersion are
comparable to that of SMF-28, and fluctuations due to fabri-
cation imperfections do not affect the dispersion significantly.
It is interesting to note that, although for large separations the
dispersion in the specific fiber geometry considered here in-
creases rapidly [24], possible fabrication fluctuations reduce
the dispersion considerably. Hence, fabrication uncertainties
not only are not a limiting factor in terms of the waveguide
dispersion but in fact help reduce the dispersion as well. In
addition, for the pulse widths considered here, the dispersion
length of the fiber is much longer than the coupling length, so
even high amounts of dispersion do not affect the coupler’s
performance considerably.

6. CONCLUSIONS
From a practical point of view, we have studied the design
considerations for multicore fiber couplers used in nonlinear
switching and mode-locking applications. The effect of fabri-
cation imperfections on the performance of a two-core fiber is
investigated, which can be generalized to all multicore cou-
plers. It is observed that there is a compromise between fab-
rication error and the required nonlinear switching power,
and also, the modulation depth of the device.

The geometrical parameters considered in this paper are
chosen such that the coupler’s tolerance to fabrication errors
is around �1%. This limits the maximum separation between
the two cores, which in turn increases the switching power. In
a more precise fabrication process, the separation between
the two cores can be increased and, consequently, the re-
quired switching power is reduced. For example, if the sepa-
ration is increased from its current value of 5.9 to 7.9 μm, the
switching power can be reduced by a factor of 3.5 down to
140 kW. To further decrease the switching power, the central
core radius can be designed such that it is slightly larger than
its optimum value. In this case, in order to achieve the re-
quired optical properties, the errors are designed directly into
the fiber preform. This lower switching power is achieved at
the expense of a lower modulation depth, but this is not much
of an issue given that in many cases even a low modulation
depth is sufficient to start the lasing process of the laser. It
should also be pointed out that to decrease the power thresh-
old, the coupler can be fabricated from material with a higher
nonlinearity compared with silica [25].

Given that there are many possible ways to build a mode-
locked fiber laser cavity, we did not want to limit ourselves to
one particular setup and so we did not discuss any specific
laser configurations here. Otherwise, in our recent publication
[5], we have shown the possibility of mode locking a laser cav-
ity with multicore optical fibers. Also, a mode-locked fiber
laser using a waveguide array has been demonstrated exper-
imentally [4], which serves as a convincing experimental
proof of concept for the potential application of nonlinear
mode coupling as saturable absorbers.
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Abstract—A detailed analysis of four-wave mixing in graded-
index multimode fibers is presented. We derive a simplified
analytic expression for calculating the phase mismatch occurring
as a result of waveguide dispersion among the pump, signal and
idler waves in these fibers. According to our analysis, we have
found a novel expression that suggests which mode combinations
of the participating beams will exhibit identical phase-matching
conditions.

I. INTRODUCTION

TO overcome the capacity limitation of nowadays optical

communication networks which are based on single mode

fibers (SMFs) [1], [2], many researchers are looking into

using multimode fibers (MMFs) for transmission in near future

networks. The reason is that MMFs can further increase the

per-fiber capacity through employing mode division multiplex-

ing. Consequently, there will be a need for suitable signal

amplification and wavelength conversion schemes in these

type of fibers. Four-wave mixing (FWM) in these fibers is a

promising technique to achieve amplification and wavelength

conversion [3]–[8].

In this paper, we focus on FWM in graded-index multimode

fibers (GIMFs). Unlike conventional MMFs, all guided modes

in a GIMF can propagate with nearly identical group veloci-

ties at special wavelengths [9]; therefore, nonlinear coupling

amongst short pulses is maximally achieved all along the fiber,

which adds to the richness of the nonlinear dynamics [10],

[11].

The ultrashort pulse propagation in multimode fibers can

be described by a generalized nonlinear Schrödinger equation

(GNLSE) [12]–[14]. Using the GNLSE, we derive a set of

general coupled equations describing the intermodal FWM

process in a GIMF. An interesting analytic expression regard-

ing the phase matching condition in these fibers is presented.

For different spatial mode combinations of the pump, signal
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and idler the phase-matching conditions are analyzed and the

nonlinear coefficients are calculated.

II. BRIEF OVERVIEW OF GIMFS

In this section, we present a brief overview of GIMFs and

establish the notation that will be used in the rest of the

paper [15]. The refractive index profile of a GIMF is given

by

n2(ρ) = n2
0

[
1− 2∆

( ρ

R

)α]
ρ ≤ R, (1)

= n2
0 (1− 2∆) ρ > R,

where R is the core radius, n0 is the maximum refractive index

in the center of the core, ∆ is the relative index difference

between the core and cladding, and α ≈ 2 characterizes a

near parabolic-index profile. The spatial transverse profile of

the electric field of a propagating mode can be decomposed

into separate radial and angular components as

Fp,m(ρ, φ) = F̃p,m(ρ)eimφ, (2)

where [16]

F̃p,m(ρ) = Ãm
p

ρm

ρm+1
0

exp(− ρ2

2ρ20
)Lm

p (
ρ2

ρ20
), (3)

and

ρ0 =
R

(4N2)1/4
, Ãm

p =

√
p!

π(p+m)!
. (4)

Lm
p is the generalized Laguerre polynomial. Here, each mode

is labeled by two integers, p ≥ 0 and m ≥ 0, referred to as the

radial and angular mode order, respectively. The coefficients

in the field profile in Eq. 3 are chosen such that the fields are

orthonormal according to
∫ 2π

0

dφ

∫
∞

0

ρdρFp′,m′(ρ, φ)Fp,m(ρ, φ) = δpp′δmm′ . (5)

The total number of guided modes (counting the polarization

degeneracy) is given as

Nα =
α

α+ 2
n2
0k

2R2∆, (6)

where N2 in Eq. 3 is also given by Eq. 6, and k = 2π/λ.

The near parabolic shape of the refractive index profile in

Eq. 1 is due to the near parabolic Germanium (Ge) doping

concentration d in the core of the GIMF.

d(ρ) = d0

[
1−

( ρ

R

)α]
ρ ≤ R, (7)

= 0 ρ > R,
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where d0 is the maximum doping in weight percentage (wt%)

at the center of the core. At each given value of Ge doping

concentration, the refractive index can be accurately described

by a fit to the Sellmeier equation, where the Sellmeier coef-

ficients depend on the Ge doping concentration. In particular,

the Sellmeier coefficients are available in Refs. [17], [18]

for pure fused silica (refractive index represented as nsi(λ)),
and Ge-doped fused silica with a Ge doping concentration

of 6.3-wt% (refractive index represented as n6.3(λ)). Here,

we have implicitly assumed that the refractive index of the

Ge-doped fused silica increases linearly with the Ge doping

concentration and we have already relied on this assumption

to relate Eqs. 1 and 7. This is a reasonable approximation,

which is also supported by experimental measurements [19].

Therefore, we derive a generalized Sellmeier equation to

incorporate the dependence of the refractive index on both

the wavelength and Ge doping concentration of fused silica as

n2(λ, d) = n2
si(λ) +

d

6.3

[
n2
6.3(λ) − n2

si(λ)
]
, (8)

where d is again the Ge doping concentration in wt%. The

utility of Eq. 8 is that it provides, along with Eqs. 1 and 7, a

reliable estimate of the refractive index for a broad wavelength

span from near-ultraviolet through mid-infrared region for

common levels of Ge doping concentration in GIMFs.

All the modes with equal group mode number g = 2p +
|m|+1 are almost degenerate in the value of the propagation

constant, which is given according to the formula

βg = n0k (1− 2∆x)1/2 , (9)

where

x =

(
g√
Nα

)2α/(α+2)

. (10)

There are three important points of caution regarding the use

of analytical equations presented above. The first point is that

Eq. 3 is only strictly valid for α = 2; however, the deviations

are small and Eq. 3 is often very reliable. The second point

is that Eq. 3 is only a solution of the Maxwell’s equations in

the core of the fiber and must be matched to an exponentially

decaying modified Bessel function of the second kind in the

cladding. In calculating the overlap integrals for coupling in

and out of the GIMF, as long as the beam-diameters of the in-

coupling and out-coupling “often”-Gaussian fields are smaller

than the core diameter of the GIMF, it is perfectly fine to use

Eq. 3. For larger in-coupling beam diameters, the use of Eq. 3

can still be at least qualitatively valid. In such cases, better

accuracy can be achieved if the cladding profile is properly

accounted for, for example by using a numerical solver. In

either case, small adjustments in the normalization coefficients

of Eq. 3 are expected according to Eq. 5 in order to compensate

for substituting Eq. 3 for the modified Bessel function of the

second kind in the cladding. The third point is that the presence

of the cladding removes the degeneracy among modes within

a mode group, both in the propagation constant and the group

velocity. While this effect is generally quite small, it is more

pronounced for higher order mode groups, which have a larger

overlap with the cladding.

III. FWM IN A MULTIMODE OPTICAL FIBER

Four-wave mixing in a MMF can be described by con-

sidering a pump, a signal and an idler wave oscillating at

frequencies ωp, ωs and ωi, respectively. During the FWM

process two pump photons are annihilated and two photons

at the signal and idler frequencies are created simultaneously,

such that the net energy and momentum are conserved. It

is assumed that all three waves are linearly polarized along

the x̂ axis and that they maintain their state of polarization

while propagating in the MMF. This paper focuses on FWM

among multiple spatial modes and therefore, polarization-

related phenomena are left for future work.

The (scalar) electric field is decomposed into a sum of mode

functions Fµ(x, y, ω) with envelopes Aµ(z, ω)

E(x, y, z, t) =
1

2

∑
µ

∫
dω

{
Fµ(x, y, ω)

Nµ(ω)
Aµ(z, ω)× (11)

exp [i(β̃µ(ω)z − ω̃t)] + c.c

}
.

We define

β̃µ(ω) = βµ(ω)− βfun(ωref), ω̃ = ω − ωref , (12)

where βµ(ω) is the propagation constant of mode µ at fre-

quency ω, and βfun(ωref) is the propagation constant of the

fundamental mode at frequency ωref . The fundamental mode is

taken to be the mode with the largest value of the propagation

constant in this paper. The field normalization constant Nµ(ω)
is chosen such that the mode profile satisfies the normalization

and orthogonality condition
∫∫

dxdy F ∗

µ (x, y, ω)Fν(x, y, ω) = δµν . (13)

Considering that FWM in a MMF leads to a wide separation

between the frequencies of the pump, signal, and idler, it is

appropriate to use separate carrier frequencies for each of these

beams. Therefore, for the spatial mode µ, separate envelopes

Ap
µ, As

µ, and Ai
µ are assumed for the pump, signal, and idler,

respectively. The upper p, s, i indices refer to the pump, signal,

idler envelopes, and the lower indices refer to the spatial

modes. The field can then be written in the form of

Aµ(z, t) = Ap
µ(z, t)e

iβ̃µ(ωp)z +As
µ(z, t)e

iΩteiβ̃µ(ωs)z (14)

+Ai
µ(z, t)e

−iΩteiβ̃µ(ωi)z,

where Ω = ωp − ωs = ωi − ωp. It is assumed that ωref = ωp,

which leads to β̃fun(ωp) = 0. The optical power carried by

mode µ is |Aµ(z, t)|2, where Aµ(z, t) is the Fourier transform

of Aµ(z, ω).

The formulation of the nonlinear pulse propagation in a

multimode optical fiber is based on the pioneering work of

Kolesik and Moloney [20] and Poletti and Horak [12]. More

recently a simplified form of the GNLSE was presented in

Ref. [13], which describes the propagation of light in GIMFs.

By substituting Eq. 14 in the GNLSE of Ref. [13], the cou-

pled nonlinear equations governing the evolution of Ap
µ(z, t),
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As
µ(z, t), and Ai

µ(z, t) are obtained and can be expressed as

∂Ap
µ

∂z
= i

∑
n>0

β
(n)
µ (ωp)

n!

(
i
∂

∂t

)n

Ap
µ (15)

+ i
n2ωp

c
[
∑
ν,κ,ξ

γpppp
µνκξ Φpppp

µνκξ Ap
νA

p
κA

p∗
ξ

+ 2
∑
ν,κ,ξ

γppss
µνκξ Φppss

µνκξ Ap
νA

s
κA

s∗
ξ

+ 2
∑
ν,κ,ξ

γppii
µνκξ Φppii

µνκξ Ap
νA

i
κA

i∗
ξ

+ 2
∑
ν,κ,ξ

γpsip
µνκξ Φpsip

µνκξ As
νA

i
κA

p∗
ξ ].

∂As
µ

∂z
= i

∑
n>0

β
(n)
µ (ωs)

n!

(
i
∂

∂t

)n

As
µ (16)

+ i
n2ωs

c
[
∑
ν,κ,ξ

γssss
µνκξ Φssss

µνκξ As
νA

s
κA

s∗
ξ

+ 2
∑
ν,κ,ξ

γsspp
µνκξ Φsspp

µνκξ As
νA

p
κA

p∗
ξ

+ 2
∑
ν,κ,ξ

γssii
µνκξ Φssii

µνκξ As
νA

i
κA

i∗
ξ

+
∑
ν,κ,ξ

γsppi
µνκξ Φsppi

µνκξ Ap
νA

p
κA

i∗
ξ ].

The nonlinear equation for the idler can be constructed from

Eq. 16 by exchanging all the signal and idler indices (s ↔ i).
These equations include the effects of self phase modulation

(SPM), cross phase modulation (XPM) and FWM. It should

be noted that only the relevant FWM terms that satisfy the

conservation of energy, 2ωp = ωs + ωi, are retained. In the

equations above, n2 is the nonlinear index coefficient and Φ(z)
are the spatial phase terms. Three representative examples are

given in Eq. 17 from which all the other phase terms can be

easily written.

Φpppp
µνκξ(z) = exp

[
i(−βp

µ + βp
ν + βp

κ − βp
ξ )z

]
, (17)

Φssii
µνκξ(z) = exp

[
i(−βs

µ + βs
ν + βi

κ − βi
ξ)z

]
,

Φsppi
µνκξ(z) = exp

[
i(−βs

µ + βp
ν + βp

κ − βi
ξ)z

]
.

βp
µ is the propagation constant of the spatial mode µ at the

pump frequency ωp: βp
µ = βµ(ωp), and so on. We also have

β(n)
µ (ωj) =

∂n

∂ωn
βµ(ω)

∣∣∣
ω=ωj

, j = p, s, i. (18)

Three representative examples of the nonlinear coupling

terms appearing in Eqs. 15 and 16 are given as

γpppp
µνκξ =

∫∫
dxdy F ∗

µ (ωp)Fν(ωp)Fκ(ωp)F
∗

ξ (ωp), (19)

γssii
µνκξ =

∫∫
dxdy F ∗

µ (ωs)Fν(ωs)Fκ(ωi)F
∗

ξ (ωi),

γsppi
µνκξ =

∫∫
dxdy F ∗

µ (ωs)Fν(ωp)Fκ(ωp)F
∗

ξ (ωi).

all other nonlinear coupling terms can be easily written using

these examples.

IV. FWM IN A GRADED-INDEX MULTIMODE FIBER

Equations 15 and 16 are very complex and include the

effects of SPM, XPM, and FWM processes. In general, solv-

ing these equations requires a powerful numerical algorithm.

However, much insight will be obtained by making a few

approximations that are easily justifiable in many practical sit-

uations [7]. In the following, it is assumed that the pump field

remains much stronger than the signal and idler and remains

undepleted during the FWM interaction. This simplifies the

equations to:

∂Ap
µ

∂z
= i

∑
n>0

β
(n)
µ (ωp)

n!

(
i
∂

∂t

)n

Ap
µ (20)

+ i
n2ωp

c

∑
ν,κ,ξ

γpppp
µνκξ Φpppp

µνκξ Ap
νA

p
κA

p∗
ξ .

∂As
µ

∂z
= i

∑
n>0

β
(n)
µ (ωs)

n!

(
i
∂

∂t

)n

As
µ (21)

+ i
n2ωs

c
[2

∑
ν,κ,ξ

γsspp
µνκξ Φsspp

µνκξ As
νA

p
κA

p∗
ξ

+
∑
ν,κ,ξ

γsppi
µνκξ Φsppi

µνκξ Ap
νA

p
κA

i∗
ξ ].

The nonlinear equation for the idler can again be constructed

from Eq. 21 by exchanging all the signal and idler indices

(s ↔ i).
The last line in Eq. 21 contains the FWM terms that

couple the pump, signal, and idler. Efficient FWM requires the

vanishing of the effective phase mismatch [7]. In a SMF, the

linear phase mismatch is often compensated by a nonlinear

contribution to the phase. However, in a MMF such as the

GIMF, it is possible to satisfy the phase-matching condition

required for FWM even in the near-linear regime where the

pump power is low. The linear phase-matching has a few

distinctive features in that it involves multiple modes, signal

and idler frequencies are far from the pump, and the effect

of the nonlinear phase on the phase-matched signal and idler

frequencies is negligible. The FWM phase-matching condition

requires
[
Φsppi

µνκξ(z) = 1
]
↔

[
∆k = βs

µ + βi
ξ − βp

ν − βp
κ = 0

]
(22)

In a GIMF, the propagation constants of the modes in Eq. 9

depend on the mode group number. Therefore, the phase-

matching condition of Eq. 22 can be cast in terms of the mode

group numbers of the pump, signal, and idler modes expressed

as {g(1)p , g
(2)
p , gi, gs}. This represents phase-matching between

a pump beam belonging to mode group g
(1)
p , another pump

beam belonging to mode group g
(2)
p , the idler beam belonging

to mode group gi, and the signal beam belonging to mode

group gs. Eigenmodal analysis was performed using the finite

element method in order to calculate the propagation constants

of the beams [21]. In Fig. 1, we consider possible phase-

matching of the form {1,1, gi, gs}; therefore, the pump modes

are assumed to be in the lowest order mode of the GIMF

(g
(1)
p = g

(2)
p = 1). The horizontal axis in Fig. 1 represents the
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pump wavelength and the vertical axis represents the phase-

matched idler wavelength. The solid (black) line shows the

phase-matching for {1,1,1,2}, where the two pump beams,

idler, and signal, propagate in the modes belonging to group

numbers 1, 1, 1, and 2, respectively.

Fig. 1. The phase-matching condition is the same for all {1,1,gi,gs}
configurations where gi + gs is the same. Therefore, {1,1,2,3}≡{1,1,1,4}.

V. PHASE-MATCHING IN GRADED-INDEX MULTIMODE

FIBERS

For ∆ ≪ 1, Eq. 9 can be simplified and written as

βg ≈ n0k

(
1−∆x− ∆2x2

2

)
+O(∆3), (23)

For short propagation lengths the O(∆2) term can be neglected

because it does not amount to substantial extra phase mismatch

between different mode groups. For situations where this term

can be ignored and α ≈ 2 can be trusted, Eq. 23 transforms

into

βg = n0k −
√
2∆

R
g, (24)

The phase-matching condition is

κ = ∆k
M

+∆k
W

+∆k
NL

= 0, (25)

where κ is the summation of the mismatch occurring due to

material dispersion (∆k
M

), waveguide dispersion (∆k
W

) and

nonlinear effects (∆k
NL

). Assuming that ∆k
NL

is negligible,

the phase-matching condition is satisfied when the linear phase

mismatch ∆k = ∆k
M

+ ∆k
W

is zero; ∆k
M

= −∆k
W

.

The mismatch contribution of the material and waveguide

dispersion for {1, 1, 1, 3} and {1, 1, 1, 5} configurations are

shown in Fig. 2. Phase-matching occurs at the intersection of

the ∆k
M

and −∆k
W

curves.

Using Eqs. 22, 24 and 25, we can find

∆k
M

= n0(ωs)ks + n0(ωi)ki − 2n0(ωp)kp, (26)

∆k
W

= −
√
2∆

R
C

FWM
, (27)

where C
FWM

is defined as

C
FWM

= gi + gs − (g(1)p + g(2)p ) (28)

Although the relative index step ∆ is a function of the

wavelength, this dependency is negligible. Therefore, ∆ can

be assumed to be a constant value for all wavelengths. This

approximation is considered in the derivation of Eq. 27.

Consequently, according to Eq. 27, ∆k
W

can be approximated

to be independent of the wavelength as well (seen as an almost

horizontal line in Fig. 2), and so it only depends on the mode

group number of the participating waves. Therefore, different

mode combinations of pump, signal and idler that exhibit the

same C
FWM

value, will have similar phase-matching conditions.

This means that if in separate FWM setups, different modes

of a pump beam placed at a fixed wavelength are excited, the

FWM interactions which have identical C
FWM

s will generate

signals (idlers) with identical wavelengths.

Fig. 2. The phase-matching curve for FWM in the considered GIMF for a
pump wavelength of 850 nm. The ∆k

M
curve displays the contribution from

the material dispersion and the ∆k
W

curves display the waveguide dispersion
contributions for two different combinations of spatial modes.

For a better understanding, a number of equivalent configu-

rations are mentioned in Table I. Although all of these spatial

mode combinations satisfy the phase matching condition and

are equivalent wavelength-wise (result in identical signal and

idler wavelengths if FWM process occurs), they have different

FWM efficiencies. The reason is that the efficiency depends

on the overlap integral of the participating spatial modes (see

Eq. 19), which is different for each case. This can be observed

in Tables II and III, where the FWM efficiency of some phase

matched beams are displayed through their nonlinear coupling

terms. In Table II the pump wavelength is λp = 850 nm, while

that of Table III is 1064 nm. In both cases it is assumed that

the first pump beam belongs to mode group g
(1)
p = 1 which is

related to the LP01 mode. Also, it is worth mentioning that the

nonlinear coupling terms γipps
µνκζ will only have non-zero values

when mi
µ − mp

ν − mp
κ + ms

ζ = 0, where mj
µ is the angular



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 0, NO. 0, MARCH 2012 5

TABLE I
MODE COMBINATIONS WITH EQUIVALENT PHASE-MATCHING CONDITIONS

{1,1,1,2}≡{1,2,2,2}≡{1,2,1,3}

{1,1,1,3}≡{1,1,2,2}

{1,1,1,4}≡{1,1,2,3}

{1,1,1,5}≡{1,1,3,3}

{1,2,1,2}≡{1,3,2,2}≡{1,3,1,3}

mode order of the µth mode at frequency j (see Eq. 2). For

instance, the combinations {1,1,1,2} and {1,1,1,4} and their

equivalents do not satisfy this condition and thus do not exist.

TABLE II
λp = 850 nm

Pump 2 Idler Signal γsppi

LP01 LP01 , 683.9 nm LP02 , 1122.8 nm 0.608

LP01 LP02 , 684 nm LP01 , 1122.3 nm 0.3645

LP01 LP01 , 630.2 nm LP03 , 1305.1 nm 0.277

LP01 LP03 , 630.7 nm LP01 , 1302.9 nm 0.0074

LP02 LP02 , 683.7 nm LP02 , 1123.1 nm 0.2667

LP21 LP21 , 683.7 nm LP02 , 1123.1 nm -0.0408

LP21 LP02 , 683.7 nm LP21 , 1123.1 nm -0.1649

LP11 LP11 , 683.8 nm LP02 , 1122.9 nm 0.1346

LP11 LP02 , 683.9 nm LP11 , 1122.7 nm -0.1075

TABLE III
λp = 1064 nm

Pump 2 Idler Signal γsppi

LP01 LP01 , 733.9 nm LP02 , 1933.7 nm 0.5225

LP01 LP02 , 739.2 nm LP01 , 1898.2 nm 0.2014

LP02 LP02 , 734.3 nm LP02 , 1931.1 nm 0.2225

LP21 LP21 , 734.3 nm LP02 , 1931.1 nm 0.0439

LP21 LP02 , 734.3 nm LP21 , 1931.1 nm -0.1217

LP11 LP11 , 734.1 nm LP02 , 1932.4 nm 0.1923

LP11 LP02 , 736.8 nm LP11 , 1913.7 nm -0.1229

VI. PARAMETRIC GAIN AND BANDWIDTH

In order to use FWM in MMFs for amplification or wave-

length conversion applications, it is required to know the

amount of gain and its bandwidth. To understand the basic

features of parametric gain, we restrict our studies to the case

where the pump beam propagates in a single fiber mode. The

parametric gain coefficient g is defined as [6], [7]

g =
√
(γsppiP

0
)2 − (κ/2)2, (29)

where P
0

is the incident pump power at z = 0, and κ is defined

as

κ = ∆k + (γspps + γippi − 2γpppp)P
0
, (30)

For simplicity, we consider the case where only the signal

Ps0 is launched into the fiber together with the pump, and the

initial idler power is zero. Using the coupled wave equations

describing FWM, the general solution for the signal and idler

powers at the end of a fiber of length L, defined as Ps and

Pi, are expressed as [6]

Gs =
Ps

Ps0

= 1 + (γsppiP
0
L)2

sinh2(gL)

(gL)2
, (31)

Gi =
Pi

Ps0

= (γsppiP
0
L)2

sinh2(gL)

(gL)2
, (32)

where Eqs. 31 and 32 describe the signal amplification and

idler generation, respectively. The maximum Gs occurs at

the signal wavelength where the phase-matching condition is

perfectly satisfied (κ = 0). As κ increases, g decreases, and

drops to zero for κ/2 = γsppiP
0
. If κ is further increased, g

becomes imaginary and for gl = ±iπ, Gs = 0, which when

substituted in Eq. 29 gives us the bandwidth as

∆κB = 2

√
(
π

L
)2 + (γsppiP

0
)2, (33)

VII. CONCLUSIONS

We have presented a detailed theoretical description of

FWM in GIMFs. After simplifying the analytical term de-

scribing phase mismatch in these fibers, our analysis has

resulted in a useful universal expression for finding separate

mode combinations of pump, signal and idler that have similar

phase-matching conditions.
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